scholarly journals Concept for the controlled plane wave exposure for animal experiments using a parabolic reflector

2005 ◽  
Vol 3 ◽  
pp. 233-238
Author(s):  
S. Tejero ◽  
S. Schelkshorn ◽  
J. Detlefsen

Abstract. In this paper a low-cost concept for the controlled RF plane wave exposure for in vivo experiments is presented. The exposure setup is based on the use of a parabolic reflector to convert the incident spherical wavefront emanating from the primary source into a plane wave. The employed paraboloid is a common prime focus paraboloid used in satellite-TV links. The main problems of the focussed approach are identified and a solution based on a defocussed system is introduced. It results in a compact, cost-effective and still power-efficient setup for the RF exposure at microwave frequencies. Simulation results show a very good performance of the concept achieving a quasi-plane wave incident on the animals with minimum variations of the exposure dose.

Author(s):  
Ashish Patel ◽  
Ravi Vanecha ◽  
Jay Patel ◽  
Divy Patel ◽  
Umang Shah ◽  
...  

: Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.


Author(s):  
Stefano Gabetti ◽  
Giovanni Putame ◽  
Federica Montrone ◽  
Giuseppe Isu ◽  
Anna Marsano ◽  
...  

In the perspective of reliable methods alternative to in vivo animal testing for cardiac tissue engineering (CTE) research, the versatile electrical stimulator ELETTRA has been developed. ELETTRA delivers controlled and stable cardiac-like electrical impulses, and it can be coupled to already existing bioreactors for providing in vitro combined biomimetic culture conditions. Designed to be cost-effective and easy to use, this device could contribute to the reduction and replacement of in vivo animal experiments in CTE.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3778
Author(s):  
Jiping Zhao ◽  
Ganqiao Ran ◽  
Mengmeng Xu ◽  
Xiaoyun Lu ◽  
Dan Tan

3,4-dihydroxyphenyl-L-alanine (L-DOPA) is a preferred drug for Parkinson’s disease, with an increasing demand worldwide that mainly relies on costly and environmentally problematic chemical synthesis. Yet, biological L-DOPA production is unfeasible at the industrial scale due to its low L-DOPA yield and high production cost. In this study, low-cost Halomonas bluephagenesis TD01 was engineered to produce tyrosinase TyrVs-immobilized polyhydroxyalkanoate (PHA) nanogranules in vivo, with the improved PHA content and increased immobilization efficiency of TyrVs accounting for 6.85% on the surface of PHA. A higher L-DOPA-forming monophenolase activity of 518.87 U/g PHA granules and an L-DOPA concentration of 974.36 mg/L in 3 h catalysis were achieved, compared to those of E. coli. Together with the result of L-DOPA production directly by cell lysates containing PHA-TyrVs nanogranules, our study demonstrated the robust and cost-effective production of L-DOPA by H. bluephagenesis, further contributing to its low-cost industrial production based on next-generation industrial biotechnology (NGIB).


2010 ◽  
Vol 78 (7) ◽  
pp. 2995-3006 ◽  
Author(s):  
Ilse D. Jacobsen ◽  
Katharina Große ◽  
Silvia Slesiona ◽  
Bernhard Hube ◽  
Angela Berndt ◽  
...  

ABSTRACT Infection models are essential tools for studying microbial pathogenesis. Murine models are considered the “gold standard” for studying in vivo infections caused by Aspergillus species, such as A. fumigatus. Recently developed molecular protocols allow rapid construction of high numbers of fungal deletion mutants, and alternative infection models based on cell culture or invertebrates are widely used for screening such mutants to reduce the number of rodents in animal experiments. To bridge the gap between invertebrate models and mice, we have developed an alternative, low-cost, and easy-to-use infection model for Aspergillus species based on embryonated eggs. The outcome of infections in the egg model is dose and age dependent and highly reproducible. We show that the age of the embryos affects the susceptibility to A. fumigatus and that increased resistance coincides with altered chemokine production after infection. The progress of disease in the model can be monitored by using egg survival and histology. Based on pathological analyses, we hypothesize that invasion of embryonic membranes and blood vessels leads to embryonic death. Defined deletion mutant strains previously shown to be fully virulent or partially or strongly attenuated in a mouse model of bronchopulmonary aspergillosis showed comparable degrees of attenuation in the egg model. Addition of nutrients restored the reduced virulence of a mutant lacking a biosynthetic gene, and variations of the infectious route can be used to further analyze the role of distinct genes in our model. Our results suggest that embryonated eggs can be a very useful alternative infection model to study A. fumigatus virulence and pathogenicity.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Kazuhiko Sasaki ◽  
Gary Guerra ◽  
Jutima Rattanakoch ◽  
Yusuke Miyata ◽  
Sharmila Suntharalingam

Abstract This research sought to develop a fabricable prosthetic liner that could be fabricable, intuitive, and a cost-effective means of providing advanced prosthetics in developing settings. An affordable ethyl-vinyl-acetate roll-on (AERO) liner for permitting a total surface bearing suction socket design was created and provided to a single participant for in vivo outcome measurements. The liner was fabricated from locally produced low-density ethyl-vinyl-acetate (EVA) foam. A liner fabrication process was developed and described, and one participant was provided 3 mm and 6 mm AERO liner variants for outcome evaluations. Six-minute walk test, residual limb temperature, and socket comfort score (SCS) while in AERO liner were collected. Thirty-day step counts of AERO liner with prosthesis and thermoplastic elastomer (TPE) liner with prosthesis were collected. The results of in vivo evaluations indicate increased speed, slightly higher residuum temperature, and increased comfort of the 6 mm AERO liner. Pedometer tallied step counts for the AERO liner and TPE liner prostheses were similar. The 6 mm AERO liner provided the best comfort and function of the two thicknesses in liners, and step count data indicated that the volume of patient activity was similar to when wearing the TPE liner prosthesis. Roll-on fabricable low-cost liners offer an affordable means of providing total surface bearing suction prostheses for resource limited environments (RLE). A prosthetist or technician can use the existing skills and lab to create liners.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 248
Author(s):  
Ryan C. Ashbaugh ◽  
Lalita Udpa ◽  
Ron R. Israeli ◽  
Assaf A. Gilad ◽  
Galit Pelled

Magnetogenetics is a new field that utilizes electromagnetic fields to remotely control cellular activity. In addition to the development of the biological genetic tools, this approach requires designing hardware with a specific set of demands for the electromagnets used to provide the desired stimulation for electrophysiology and imaging experiments. Here, we present a universal stimulus delivery system comprising four magnet designs compatible with electrophysiology, fluorescence and luminescence imaging, microscopy, and freely behaving animal experiments. The overall system includes a low-cost stimulation controller that enables rapid switching between active and sham stimulation trials as well as precise control of stimulation delivery thereby enabling repeatable and reproducible measurements.


2006 ◽  
Vol 3 (5) ◽  
pp. 1515-1541
Author(s):  
M. Marcelli ◽  
A. Di Maio ◽  
D. Donis ◽  
U. Mainardi ◽  
G. M. R. Manzella

Abstract. Physical and biological processes of the marine ecosystem have a high spatial and temporal variability, whose study is possible only through high resolution and synoptic observations. The T-FLAP (Temperature and Fluorescence LAunchable Probe) was charted in order to answer to the claim of a cost effective temperature and fluorescence expendable profiler, to be used in ships of opportunity. The development of the expendable fluorimeter has followed similar concepts of the XBT (a wire conducting the signal to a computer card), but differently from that, T-FLAP was developed with an electronic system that can be improved and adapted to several variables measure channels. Commercial components were utilized to reach the aim of a low-cost probe: a glass bulb temperature resistor for the temperature measurement, blue LEDs, a photodiode and available selective glass filters, for fluorescence measurement. The measurement principle employed to detect phytoplankton's biomass is the active fluorescence. This method is an in vivo chlorophyll measure, that can get the immediate biophysical reaction of the cell inside the aquatic ecosystem; it is a non-disruptive method which gives a real time measure and avoids the implicit errors due to the manipulation of samples. The possibility of using continuous profiling probe, with an active fluorescence measurement, is very important in the study of phytoplankton in real time; it is the best way to follow the variability of sea productivity. In fact, because of the high time and space variability of phytoplankton, due to its capability to answer in a relatively short time to ecological variations in its environment and because of its characteristic patchiness, there isn't a precise quantitative estimation of the biomass present in the Mediterranean sea.


Ocean Science ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. 311-320 ◽  
Author(s):  
M. Marcelli ◽  
A. Di Maio ◽  
D. Donis ◽  
U. Mainardi ◽  
G. M. R. Manzella

Abstract. Physical and biological processes of the marine ecosystem have a high spatial and temporal variability, whose study is possible only through high resolution and synoptic observations. The Temperature and Fluorescence Launchable Probe was charted in order to answer to the claim of a cost effective temperature and fluorescence expendable profiler, to be used in ships of opportunity. The development of the expendable fluorometer has followed similar concepts of the XBT (a wire conducting the signal to a computer card), but differently from the latter it was developed with an electronic system which can be improved and adapted to several variables measure channels. To reach the aim of a low-cost probe, were utilized commercial components: a glass bulb temperature resistor for the temperature measurement, blue LEDs, a photodiode and available selective glass filters, for the fluorescence measurement. The measurement principle employed to detect phytoplankton's biomass is the active fluorescence. This method is an in vivo chlorophyll estimation, that can get the immediate biophysical reaction of phytoplankton inside the aquatic environment; it is a non-disruptive method which gives real time estimation and avoids the implicit errors due to the manipulation of samples. The possibility of using a continuous profiling probe, with an active fluorescence measurement, is very important in real time phytoplankton's study; it is the best way to follow the variability of sea productivity. In fact, because of the high time and space variability of phytoplankton, due to its capability to answer in a relatively short time to ecological variations in its environment and because of its characteristic patchiness, there isn't a precise quantitative estimation of the biomass present in the Mediterranean Sea.


2018 ◽  
Author(s):  
Siyu Lin ◽  
Jie Qiao ◽  
Lixin Ma ◽  
Yi Liu

AbstractCRISPR/Cas ribonucleoprotein (RNP) complexes have been recently used as promising biological tools with plenty of applications, however, there are by far no efficient methods to prepare them at large scale and low cost. Here, we present a simple method to directly produce and purify Cas RNP, including the widely used Cas9 and Cas12a nuclease, from E.coli in a single step using an ultra-high-affinity CL7/Im7 purification system. The prepared Cas RNP shows high stability, solid nuclease activity in vitro, and profound genome editing efficiency in vivo. Our method is convenient, cost-effective, and applicable to prepare other CRISPR associated nucleases.


2018 ◽  
Author(s):  
Bailey Surtees ◽  
Sean Young ◽  
Yixin Hu ◽  
Guannan Wang ◽  
Evelyn McChesney ◽  
...  

AbstractBreast cancer rates are rising in low- and middle-income countries (LMICs), yet there is a lack of accessible and cost-effective treatment. As a result, the cancer burden and death rates are highest in LMICs. In an effort to meet this need, our work presents the design and feasibility of a low-cost cryoablation system using widely-available carbon dioxide as the only consumable. This system uses an 8-gauge outer-diameter needle and Joule-Thomson expansion to percutaneously necrose tissue with cryoablation. Bench top experiments characterized temperature dynamics in ultrasound gel demonstrated that isotherms greater than 2 cm were formed. Further, this system was applied to mammary tumors in anin vivorat model and necrosis was verified by histopathology. Finally, freezing capacity under a large heat load was assessed with anin vivoporcine study, where volumes of necrosis greater than 1.5 cm in diameter confirmed by histopathology were induced in a highly perfused liver after two 7-minute freeze cycles. These results demonstrate the feasibility of a carbon-dioxide based cryoablation system for improving solid tumor treatment options in resource-constrained environments.


Sign in / Sign up

Export Citation Format

Share Document