scholarly journals Urban warming in villages

2015 ◽  
Vol 12 (1) ◽  
pp. 157-162 ◽  
Author(s):  
J. Lindén ◽  
C.S.B. Grimmond ◽  
J. Esper

Abstract. Long term meteorological records (> 100 years) from stations associated with villages are generally classified as rural and assumed to have no urban influence. Using networks installed in two European villages, the local and microclimatic variations around two of these rural-village sites are examined. An annual average temperature difference ($\\Delta{T}$) of 0.6 and 0.4 K was observed between the built-up village area and the current meteorological station in Geisenheim (Germany) and Haparanda (Sweden), respectively. Considerably larger values were recorded for the minimum temperatures and during summer. The spatial variations in temperature within the villages are of the same order as recorded over the past 100+ years in these villages (0.06 to 0.17 K/10 years). This suggests that the potential biases in the long records of rural-villages also warrant careful consideration like those of the more commonly studied large urban areas effects.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1569
Author(s):  
Santiago Moreno-Carbonell ◽  
Eugenio F. Sánchez-Úbeda ◽  
Antonio Muñoz

Temperature is widely known as one of the most important drivers to forecast electricity and gas variables, such as the load. Because of that reason, temperature forecasting is and has been for years of great interest for energy forecasters and several approaches and methods have been published. However, these methods usually do not consider temperature trend, which causes important error increases when dealing with medium- or long-term estimations. This paper presents several temperature forecasting methods based on time series decomposition and analyzes their results and the trends of 37 different European countries, proving their annual average temperature increase and their different behaviors regarding trend and seasonal components.


2019 ◽  
Vol 32 (14) ◽  
pp. 4299-4320 ◽  
Author(s):  
Yuchuan Lai ◽  
David A. Dzombak

Abstract Time series of historical annual average temperature, total precipitation, and extreme weather indices were constructed and analyzed for 103 (for temperature indices) and 115 (for precipitation indices) U.S. cities with climate records starting earlier than 1900. Mean rate of change and related 95% confidence bounds were calculated for each city using linear regression for the full periods of record. Box–Cox transformations of some time series of climate records were performed to address issues of non-normal distribution. Thirteen cities among the nine U.S. climate regions were selected and further evaluated with adequacy diagnoses and analyses for each month. The results show that many U.S. cities exhibit long-term historical increases in annual average temperature and precipitation, although there are spatial and temporal variations in the observed trends among the cities. Some cities in the Ohio Valley and Southeast regions exhibit decreasing or statistically nonsignificant increasing trends in temperatures. Many of the cities exhibiting statistically significant increases in precipitation are in the Northeast and Upper Midwest regions. The records for the cities are individually unique in both annual and monthly change, and cities within the same climate region sometimes exhibit substantially different changes. Within the full periods of record, discernible decade-long subtrends were observed for some cities; consequently, analysis of selected shorter periods can lead to inconclusive and biased results. These statistical analyses of constructed time series of city-specific long-term historical climate records provide detailed historical climate change information for cities across the United States.


1993 ◽  
Vol 30 (5) ◽  
pp. 954-974 ◽  
Author(s):  
Alan V. Morgan ◽  
Marian Kuc ◽  
John T. Andrews

Peats and woody-detrital deposits at two localities close to the Barnes Ice Cap at approximately 70°N contain insect faunas and mosses that indicate that these sites were situated close to tree line during the period of deposition. Modern tree line occurs some 1325 km (820 mi) to the south and southwest of these sites. Attempts to provide numeric ages based on the U-series of woody fragments were not successful. Although it has been assumed in the past that these peats were laid down during the last interglaciation, the inferred paleoclimatic conditions based on the insect faunas and plant remains suggest a substantially older (possible late Tertiary to mid Quaternary) age. The Flitaway and Isortoq sites probably had an annual average temperature at the time of deposition which was between −8 and −9 °C, i.e., about 4 – 5 °C warmer than today. Such information is important to calibrate and check global climatic models that predict substantial high-latitude greenhouse-gas warming.


2012 ◽  
Vol 616-618 ◽  
pp. 1496-1499
Author(s):  
Guo Wei Xu ◽  
Xin Tian Yuan ◽  
Shu Ling Huang ◽  
Yang Gao

Selecting 50 years temperature observation data from1959 to 2008 and using statistical analysis, this paper revealed the characteristics of temperature variation in Hefei city. The results show that in past 50 years, the annual average temperature in Hefei city greatly increased, tendency rate of temperature change was 0.246°C/10 a, especially after 1993, the temperature increased significantly; the temperature in four seasons all increased somewhat, warming was most prominent in spring. The most significant temperature increase was in spring, winter following behind, temperature increase in autumn was not obvious, and the average summer temperature increased the most unobvious.


2019 ◽  
Vol 31 ◽  
Author(s):  
Ricardo Hirata ◽  
Alexandra Vieira Suhogusoff

Abstract Groundwater is an essential resource for society and the environment in Brazil. More than 557 m3/s (17.5 km3/y) are extracted through 2.5 million wells to meet demand in cities and the countryside, generating an economy of R$ 56 billion per year (US$ 14 billion/year). The aquifer has a remarkable function in the hydrological cycle because its large storage regulates the perenniality of rivers, lakes and preserves mangroves, marshes, and vegetation in dry periods. Aquifer discharges maintain between 24% (annual average) and 49% (dry season) of the flow of these surface water bodies. Although studies on groundwater quality are still restricted, it is known that most aquifers still preserve their excellent natural quality. Nevertheless, over the past years, there has been a growing increase in cases of contamination associated with: (i) natural geochemical anomalies (iron, manganese, and fluorine, secondarily, chromium, and barium, and rarely arsenic) due to the dissolution of specific minerals; and (ii) human contaminant activities, related to urban areas without sewage network, or with industrial activities, storage of hazardous products, and solid waste facilities. Among the anthropic compounds commonly handled, the most problematic are the chlorinated organic solvents and heavy metals, and in non-sewage areas, nitrate. The precarious knowledge of aquifer-quality, especially in cities, demonstrates the need to invest in regular and systematic hydrogeological research and mapping projects that drive to the improvement of the practices on aquifer quality protection.


2015 ◽  
Vol 9 (2) ◽  
pp. 2367-2395 ◽  
Author(s):  
S. Yang ◽  
Y. Shi

Abstract. Ice caves exist in locations where annual average temperature in higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively explain the mechanism of formation and preservation of the ice cave, we use Finite Element Method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside, very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice–water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, etc. for sustainable development of ice cave as tourism resource. In some other ice caves in China, managers installed air-tight doors at these ice caves entrance intending to "protect" these caves, but this prevent cooling down these caves in winters and these cave ices will entirely melt within tens of years.


2011 ◽  
Vol 137 ◽  
pp. 286-290 ◽  
Author(s):  
Xi Chun ◽  
Mei Jie Zhang ◽  
Mei Ping Liu

The objective of this study is to analyse the climate changing patterns chronologically for exposing the coincident relationships between the lake area fluctuation and the climate change in Qehan lake of Abaga county of Inner Mongolia. The results show that there’s highly interrelation between the changes of the lake area and the climatic factors here, the annual average temperature and annual evaporation are negatively interrelate to the lake area fluctuation, and the annual precipitation interrelate to it is positive. The lake area has descended about 75 km2 during the nearly past 40 years. There were about two considerable lake expansions in 1973, 1998 through the generally lake area descending process.


2012 ◽  
Vol 524-527 ◽  
pp. 2388-2393 ◽  
Author(s):  
Nan Wang ◽  
Mahjoub Elnimeiri

The phenomenon of climate change is becoming a global problem. One of the most important reasons of climate change is the increase in CO2 levels due to emissions from fossil fuel energy use in daily human activities. This research will use the data of the annual average temperature and energy consumption in the past 41 years of Shanghai, the largest city in China, to establish the statistical relationship between climate change and energy consumption. It is found that there is a strong positive relationship between climate change and energy consumption in Shanghai. The phenomenon of climate change could be controlled by reducing excessive energy consumption in people’s daily life. Furthermore, this paper will also discuss the reason of such relationship, and provide suggesstions of saving energy and protecting our environment.


2018 ◽  
Vol 36 (2) ◽  
pp. 555-564 ◽  
Author(s):  
Everton Frigo ◽  
Francesco Antonelli ◽  
Djeniffer S. S. da Silva ◽  
Pedro C. M. Lima ◽  
Igor I. G. Pacca ◽  
...  

Abstract. Quasi-periodic variations in solar activity and galactic cosmic rays (GCRs) on decadal and bidecadal timescales have been suggested as a climate forcing mechanism for many regions on Earth. One of these regions is southern Brazil, where the lowest values during the last century were observed for the total geomagnetic field intensity at the Earth's surface. These low values are due to the passage of the center of the South Atlantic Magnetic Anomaly (SAMA), which crosses the Brazilian territory from east to west following a latitude of ∼ 26∘. In areas with low geomagnetic intensity, such as the SAMA, the incidence of GCRs is increased. Consequently, possible climatic effects related to the GCRs tend to be maximized in this region. In this work, we investigate the relationship between the ∼ 11-year and ∼ 22-year cycles that are related to solar activity and GCRs and the annual average temperature recorded between 1936 and 2014 at two weather stations, both located near a latitude of 26∘ S but at different longitudes. The first of these stations (Torres – TOR) is located in the coastal region, and the other (Iraí – IRA) is located in the interior, around 450 km from the Atlantic Ocean. Sunspot data and the solar modulation potential for cosmic rays were used as proxies for the solar activity and the GCRs, respectively. Our investigation of the influence of decadal and bidecadal cycles in temperature data was carried out using the wavelet transform coherence (WTC) spectrum. The results indicate that periodicities of 11 years may have continuously modulated the climate at TOR via a nonlinear mechanism, while at IRA, the effects of this 11-year modulation period were intermittent. Four temperature maxima, separated by around 20 years, were detected in the same years at both weather stations. These temperature maxima are almost coincident with the maxima of the odd solar cycles. Furthermore, these maxima occur after transitions from even to odd solar cycles, that is, after some years of intense GCR flux. The obtained results offer indirect mathematical evidence that solar activity and GCR variations contributed to climatic changes in southern Brazil during the last century. A comparison of the results obtained for the two weather stations indicates that the SAMA also contributes indirectly to these temperature variations. The contribution of other mechanisms also related to solar activity cannot be excluded. Keywords. Meteorology and atmospheric dynamics (climatology)


Sign in / Sign up

Export Citation Format

Share Document