scholarly journals Atmospheric circulation types and extreme areal precipitation in southern central Europe

2017 ◽  
Vol 14 ◽  
pp. 71-75 ◽  
Author(s):  
Jucundus Jacobeit ◽  
Markus Homann ◽  
Andreas Philipp ◽  
Christoph Beck

Abstract. Gridded daily rainfall data for southern central Europe are aggregated to regions of similar precipitation variability by means of S-mode principal component analyses separately for the meteorological seasons. Atmospheric circulation types (CTs) are derived by a particular clustering technique including large-scale fields of SLP, vertical wind and relative humidity at the 700 hPa level as well as the regional rainfall time series. Multiple regression models with monthly CT frequencies as predictors are derived for monthly frequencies and amounts of regional precipitation extremes (beyond the 95 % percentile). Using predictor output from different global climate models (ECHAM6, ECHAM5, EC-EARTH) for different scenarios (RCP4.5, RCP8.5, A1B) and two projection periods (2021–2050, 2071–2100) leads to assessments of future changes in regional precipitation extremes. Most distinctive changes are indicated for the summer season with mainly increasing extremes for the earlier period and widespread decreasing extremes towards the end of the 21st century, mostly for the strong scenario. Considerable uncertainties arise from the predictor use of different global climate models, especially during the winter and spring seasons.

2021 ◽  
Author(s):  
Romana Beranova ◽  
Jan Kysely

<p>Heavy large-scale precipitation events are associated with large negative impacts on human society, mainly as they may trigger floods and landslides. Therefore, it is important to better understand underlying physical mechanisms leading to extremes and how they are reproduced in climate models.</p><p>The present study evaluates ability of current climate models to reproduce relationships between large-scale heavy precipitation and atmospheric circulation over central Europe. We use an ensemble of 32 regional climate model (RCM) simulations with the 0.11° resolution, taken from the Euro-CORDEX project. The statistics are compared for the recent climate simulations (1951-2005) against observations from the E-OBS gridded data set to identify main drawbacks of the RCMs. The large-scale heavy precipitation events are defined as days with at least 50% of all grid points over the examined area with heavy precipitation (exceeding the 75th or 90th percentile of the distribution of seasonal rainy days). The association with atmospheric circulation types is investigated through circulation types derived from sea level pressure using airflow indices (direction, strength and vorticity). The analysis is carried out separately for summer (JJA) and winter (DJF) season.</p><p>The number of days with large-scale heavy precipitation per season in observations reflects the seasonal precipitation sums (the larger precipitation sum the more days). In winter, the large-scale heavy precipitation is mainly associated with the west, northwest, southwest and cyclonic circulation types while in summer with the cyclonic, north, southwest and undefined types (in the observed data). Some RCM simulations are not able to reproduce the number of days with the large-scale heavy precipitation events and their relationships with circulation, especially in summer.</p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2008 ◽  
Vol 80 (2) ◽  
pp. 397-408 ◽  
Author(s):  
David M. Lapola ◽  
Marcos D. Oyama ◽  
Carlos A. Nobre ◽  
Gilvan Sampaio

We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).


2017 ◽  
Author(s):  
Imme Benedict ◽  
Chiel C. van Heerwaarden ◽  
Albrecht H. Weerts ◽  
Wilco Hazeleger

Abstract. The hydrological cycle of river basins can be simulated by combining global climate models (GCMs) and global hydrological models (GHMs). The spatial resolution of these models is restricted by computational resources and therefore limits the processes and level of detail that can be resolved. To further improve simulations of precipitation and river-runoff on a global scale, we assess and compare the benefits of an increased resolution for a GCM and a GHM. We focus on the Rhine and Mississippi basin. Increasing the resolution of a GCM (1.125° to 0.25°) results in more realistic large-scale circulation patterns over the Rhine and an improved precipitation budget. These improvements with increased resolution are not found for the Mississippi basin, most likely because precipitation is strongly dependent on the representation of still unresolved convective processes. Increasing the resolution of vegetation and orography in the high resolution GHM (from 0.5° to 0.05°) shows no significant differences in discharge for both basins, because the hydrological processes depend highly on other parameter values that are not readily available at high resolution. Therefore, increasing the resolution of the GCM provides the most straightforward route to better results. This route works best for basins driven by large-scale precipitation, such as the Rhine basin. For basins driven by convective processes, such as the Mississippi basin, improvements are expected with even higher resolution convection permitting models.


2021 ◽  
Vol 34 (2) ◽  
pp. 509-525
Author(s):  
David P. Rowell ◽  
Rory G. J. Fitzpatrick ◽  
Lawrence S. Jackson ◽  
Grace Redmond

AbstractProjected changes in the intensity of severe rain events over the North African Sahel—falling from large mesoscale convective systems—cannot be directly assessed from global climate models due to their inadequate resolution and parameterization of convection. Instead, the large-scale atmospheric drivers of these storms must be analyzed. Here we study changes in meridional lower-tropospheric temperature gradient across the Sahel (ΔTGrad), which affect storm development via zonal vertical wind shear and Saharan air layer characteristics. Projected changes in ΔTGrad vary substantially among models, adversely affecting planning decisions that need to be resilient to adverse risks, such as increased flooding. This study seeks to understand the causes of these projection uncertainties and finds three key drivers. The first is intermodel variability in remote warming, which has strongest impact on the eastern Sahel, decaying toward the west. Second, and most important, a warming–advection–circulation feedback in a narrow band along the southern Sahara varies in strength between models. Third, variations in southern Saharan evaporative anomalies weakly affect ΔTGrad, although for an outlier model these are sufficiently substantive to reduce warming here to below that of the global mean. Together these uncertain mechanisms lead to uncertain southern Saharan/northern Sahelian warming, causing the bulk of large intermodel variations in ΔTGrad. In the southern Sahel, a local negative feedback limits the contribution to uncertainties in ΔTGrad. This new knowledge of ΔTGrad projection uncertainties provides understanding that can be used, in combination with further research, to constrain projections of severe Sahelian storm activity.


2006 ◽  
Vol 63 (11) ◽  
pp. 2813-2830 ◽  
Author(s):  
Roger Marchand ◽  
Nathaniel Beagley ◽  
Sandra E. Thompson ◽  
Thomas P. Ackerman ◽  
David M. Schultz

Abstract A classification scheme is created to map the synoptic-scale (large scale) atmospheric state to distributions of local-scale cloud properties. This mapping is accomplished by a neural network that classifies 17 months of synoptic-scale initial conditions from the rapid update cycle forecast model into 25 different states. The corresponding data from a vertically pointing millimeter-wavelength cloud radar (from the Atmospheric Radiation Measurement Program Southern Great Plains site at Lamont, Oklahoma) are sorted into these 25 states, producing vertical profiles of cloud occurrence. The temporal stability and distinctiveness of these 25 profiles are analyzed using a bootstrap resampling technique. A stable-state-based mapping from synoptic-scale model fields to local-scale cloud properties could be useful in three ways. First, such a mapping may improve the understanding of differences in cloud properties between output from global climate models and observations by providing a physical context. Second, this mapping could be used to identify the cause of errors in the modeled distribution of clouds—whether the cause is a difference in state occurrence (the type of synoptic activity) or the misrepresentation of clouds for a particular state. Third, robust mappings could form the basis of a new statistical cloud parameterization.


2015 ◽  
Vol 28 (14) ◽  
pp. 5583-5600 ◽  
Author(s):  
Jacob Scheff ◽  
Dargan M. W. Frierson

Abstract The aridity of a terrestrial climate is often quantified using the dimensionless ratio of annual precipitation (P) to annual potential evapotranspiration (PET). In this study, the climatological patterns and greenhouse warming responses of terrestrial P, Penman–Monteith PET, and are compared among 16 modern global climate models. The large-scale climatological values and implied biome types often disagree widely among models, with large systematic differences from observational estimates. In addition, the PET climatologies often differ by several tens of percent when computed using monthly versus 3-hourly inputs. With greenhouse warming, land P does not systematically increase or decrease, except at high latitudes. Therefore, because of moderate, ubiquitous PET increases, decreases (drying) are much more widespread than increases (wetting) in the tropics, subtropics, and midlatitudes in most models, confirming and expanding on earlier findings. The PET increases are also somewhat sensitive to the time resolution of the inputs, although not as systematically as for the PET climatologies. The changes in the balance between P and PET are also quantified using an alternative aridity index, the ratio , which has a one-to-one but nonlinear correspondence with . It is argued that the magnitudes of changes are more uniformly relevant than the magnitudes of changes, which tend to be much higher in wetter regions. The ratio and its changes are also found to be excellent statistical predictors of the land surface evaporative fraction and its changes.


2018 ◽  
Author(s):  
Martha M. Vogel ◽  
Jakob Zscheischler ◽  
Sonia I. Seneviratne

Abstract. The frequency and intensity of climate extremes is expected to increase in many regions due to anthropogenic climate change. In Central Europe extreme temperatures are projected to change more strongly than global mean temperatures and soil moisture-temperature feedbacks significantly contribute to this regional amplification. Because of their strong societal, ecological and economic impacts, robust projections of temperature extremes are needed. Unfortunately, in current model projections, temperature extremes in Central Europe are prone to large uncertainties. In order to understand and potentially reduce uncertainties of extreme temperatures projections in Europe, we analyze global climate models from the CMIP5 ensemble for the business-as-usual high-emission scenario (RCP8.5). We find a divergent behavior in long-term projections of summer precipitation until the end of the 21st century, resulting in a trimodal distribution of precipitation (wet, dry and very dry). All model groups show distinct characteristics for summer latent heat flux, top soil moisture, and temperatures on the hottest day of the year (TXx), whereas for net radiation and large-scale circulation no clear trimodal behavior is detectable. This suggests that different land-atmosphere coupling strengths may be able to explain the uncertainties in temperature extremes. Constraining the full model ensemble with observed present-day correlations between summer precipitation and TXx excludes most of the very dry and dry models. In particular, the very dry models tend to overestimate the negative coupling between precipitation and TXx, resulting in a too strong warming. This is particularly relevant for global warming levels above 2 °C. The analysis allows for the first time to substantially reduce uncertainties in the projected changes of TXx in global climate models. Our results suggest that long-term temperature changes in TXx in Central Europe are about 20 % lower than projected by the multi-model median of the full ensemble. In addition, mean summer precipitation is found to be more likely to stay close to present-day levels. These results are highly relevant for improving estimates of regional climate-change impacts including heat stress, water supply and crop failure for Central Europe.


2020 ◽  
Author(s):  
Claudia Stephan

<p>Idealized simulations have shown decades ago that shallow clouds generate internal gravity waves, which under certain atmospheric background conditions become trapped inside the troposphere and influence the development of clouds. These feedbacks, which occur at horizontal scales of up to several tens of km are neither resolved, nor parameterized in traditional global climate models (GCMs), while the newest generation of GCMs is starting to resolve them. The interactions between the convective boundary layer and trapped waves have almost exclusively been studied in highly idealized frameworks and it remains unclear to what degree this coupling affects the organization of clouds and convection in the real atmosphere. Here, the coupling between clouds and trapped waves is examined in storm-resolving simulations that span the entirety of the tropical Atlantic and are initialized and forced by meteorological analyses. The coupling between clouds and trapped waves is sufficiently strong to be detected in these simulations of full complexity.  Stronger upper-tropospheric westerly winds are associated with a stronger cloud-wave coupling. In the simulations this results in a highly-organized scattered cloud field with cloud spacings of about 19 km, matching the dominant trapped wavelength. Based on the large-scale atmospheric state wave theory can reliably predict the regions and times where cloud-wave feedbacks become relevant to convective organization. Theory, the simulations and satellite imagery imply a seasonal cycle in the trapping of gravity waves. </p>


2020 ◽  
Vol 638 ◽  
pp. A77
Author(s):  
P. Auclair-Desrotour ◽  
K. Heng

Context. Over large timescales, a terrestrial planet may be driven towards spin-orbit synchronous rotation by tidal forces. In this particular configuration, the planet exhibits permanent dayside and nightside, which may induce strong day-night temperature gradients. The nightside temperature depends on the efficiency of the day-night heat redistribution and determines the stability of the atmosphere against collapse. Aims. To better constrain the atmospheric stability, climate, and surface conditions of rocky planets located in the habitable zone of their host star, it is thus crucial to understand the complex mechanism of heat redistribution. Methods. Building on early works and assuming dry thermodynamics, we developed a hierarchy of analytic models taking into account the coupling between radiative transfer, dayside convection, and large-scale atmospheric circulation in the case of slowly rotating planets. There are two types of these models: a zero-dimensional two-layer approach and a two-column radiative-convective-subsiding-upwelling model. They yield analytical solutions and scaling laws characterising the dependence of the collapse pressure on physical features, which are compared to the results obtained by early works using 3D global climate models (GCMs). Results. The analytical theory captures (i) the dependence of temperatures on atmospheric opacities and scattering in the shortwave and in the longwave, (ii) the behaviour of the collapse pressure observed in GCM simulations at low stellar fluxes that are due to the non-linear dependence of the atmospheric opacity on the longwave optical depth at the planet’s surface, (iii) the increase of stability generated by dayside sensible heating, and (iv) the decrease of stability induced by the increase of the planet size.


Sign in / Sign up

Export Citation Format

Share Document