scholarly journals Tornado funnel-shaped cloud as convection in a cloudy layer

2009 ◽  
Vol 3 (1) ◽  
pp. 17-21
Author(s):  
M. V. Zavolgenskiy ◽  
P. B. Rutkevich

Abstract. Analytical model of convection in a thick horizontal cloud layer with free upper and lower boundaries is constructed. The cloud layer is supposed to be subjected to the Coriolis force due to the cloud rotation, which is a typical condition for tornado formation. It is obtained that convection in such system can look as just one rotating cell in contrast to the usual many-cells Benard convection. The tornado-type vortex is different from spatially periodic convective cells because their amplitudes vanish with distance from the vortex axis. The lower boundary at this convection can substantially move out of the initially horizontal cloud layer forming a single vertical vortex with intense upward and downward flows. The results are also applicable to convection in water layer with negative temperature gradient.

1994 ◽  
Vol 281 ◽  
pp. 33-50 ◽  
Author(s):  
Masaki Ishiwatari ◽  
Shin-Ichi Takehiro ◽  
Yoshi-Yuki Hayashi

The effects of thermal conditions on the patterns of two-dimensional Boussinesq convection are studied by numerical integration. The adopted thermal conditions are (i) the heat fluxes through both upper and lower boundaries are fixed, (ii) the same as (i) but with internal cooling, (iii) the temperature on the lower boundary and the heat flux through the upper boundary are fixed, (iv) the same as (iii) but with internal cooling, and (v) the temperatures on both upper and lower boundaries are fixed. The numerical integrations are performed with Ra = 104 and Pr = 1 over the region whose horizontal and vertical lengths are 8 and 1, respectively.The results confirm that convective cells with the larger horizontal sizes tend to form under the conditions where the temperature is not fixed on any boundaries. Regardless of the existence of internal cooling, one pair of cells spreading all over the region forms in the equilibrium states. On the other hand, three pairs of cells form and remain when the temperature on at least one boundary is fixed. The formation of single pairs of cells appearing under the fixed heat flux conditions shows different features with and without internal cooling. The difference emerges as the appearance of a phase change, whose existence can be suggested by the weak nonlinear equation derived by Chapman & Proctor (1980).


2019 ◽  
Vol 65 (4) ◽  
pp. 363-388
Author(s):  
G. V. Alekseev ◽  
A. V. Pnyushkov ◽  
A. V. Smirnov ◽  
A. E. Vyazilova ◽  
N. I. Glok

Inter-decadal changes in the water layer of Atlantic origin and freshwater content (FWC) in the upper 100 m layer were traced jointly to assess the influence of inflows from the Atlantic on FWC changes based on oceanographic observations in the Arctic Basin for the 1960s – 2010s. For this assessment, we used oceanographic data collected at the Arctic and Antarctic Research Institute (AARI) and the International Arctic Research Center (IARC). The AARI data for the decades of 1960s – 1990s were obtained mainly at the North Pole drifting ice camps, in high-latitude aerial surveys in the 1970s, as well as in ship-based expeditions in the 1990s. The IARC database contains oceanographic measurements acquired using modern CTD (Conductivity – Temperature – Depth) systems starting from the 2000s. For the reconstruction of decadal fields of the depths of the upper and lower 0 °С isotherms and FWC in the 0–100 m layer in the periods with a relatively small number of observations (1970s – 1990s), we used a climatic regression method based on the conservativeness of the large-scale structure of water masses in the Arctic Basin. Decadal fields with higher data coverage were built using the DIVAnd algorithm. Both methods showed almost identical results when compared.  The results demonstrated that the upper boundary of the Atlantic water (AW) layer, identified with the depth of zero isotherm, raised everywhere by several tens of meters in 1990s – 2010s, when compared to its position before the start of warming in the 1970s. The lower boundary of the AW layer, also determined by the depth of zero isotherm, became deeper. Such displacements of the layer boundaries indicate an increase in the volume of water in the Arctic Basin coming not only through the Fram Strait, but also through the Barents Sea. As a result, the balance of water masses was disturbed and its restoration had to occur due to the reduction of the volume of the upper most dynamic freshened layer. Accordingly, the content of fresh water in this layer should decrease. Our results confirmed that FWC in the 0–100 m layer has decreased to 2 m in the Eurasian part of the Arctic Basin to the west of 180° E in the 1990s. In contrast, the FWC to the east of 180° E and closer to the shores of Alaska and the Canadian archipelago has increased. These opposite tendencies have been intensified in the 2000s and the 2010s. A spatial correlation between distributions of the FWC and the positions of the upper AW boundary over different decades confirms a close relationship between both distributions. The influence of fresh water inflow is manifested as an increase in water storage in the Canadian Basin and the Beaufort Gyre in the 1990s – 2010s. The response of water temperature changes from the tropical Atlantic to the Arctic Basin was traced, suggesting not only the influence of SST at low latitudes on changes in FWC, but indicating the distant tropical impact on Arctic processes. 


2016 ◽  
Vol 56 (2) ◽  
pp. 199-206 ◽  
Author(s):  
R. A. Chernov

As a result of laboratory tests were obtained values of the coefficient thermal conductivity (Keff) of new snow for different types of the solid precipitation: plates, needles, stellars, graupels. Snow samples were collected during a snowfall and placed in the freezer. For all types of sediment thermal conductivity of snow is equal to 0.03–0.04 W/m·°C. Transformation of new snow occurs within 10 days at average temperature −10 °C and the gradient temperature of 50–60 °C/m. Under these conditions, the metamorphism leads to an increase the density of snow, size of grains and rounded snow particles. At the beginning of the experiment, the thermal conductivity of snow is linearly increased in proportion to the density of the snow. However, after 3–5 days Keff stabilized at about 0.08–0.09 W/m·°C, although the density of the snow and size of grains continued to increase. This effect occurs with the appearance of faceted crystals and loosening of snow. In the future, while maintaining a negative temperature coefficient of thermal conductivity remained unchanged. Thus, the temperature gradient metamorphism affect to the thermal conductivity snow, which plays an important role in maintaining the thermal insulation properties of snow cover. The article describes the formula to calculate the thermal conductivity of the snow conditions in the temperature gradient metamorphism. Such conditions are characteristic of the vast expanses of the north and northeast of the European part of Russia. On the basis of long-term observations in Moscow shows the average minimum and maximum values for the density of the snow woods and fields on the basis of which can be calculated for the thermal properties of the snow.


Author(s):  
Hrishikesh Sivanandan ◽  
V. Ratna Kishore ◽  
Mukesh Goel ◽  
Abhishek Asthana

AbstractThe dispersion of air pollutants emitted from industries has been studied ever since the dawn of industrialisation. The present work focuses on investigating the effect of negative atmospheric temperature gradient and the plume stack orientation of two individual equal-height stacks on the vertical rise and dispersion of the plume. The study carried out upon three-stack layout configurations namely inline, 45° and non-inline, separated by an inter-stack distance of 12 times the exit chimney diameter (12 D) and 22 times the exit chimney diameter (22 D) in each case over the two temperature gradients of −0.2 K/100 m and −0.5 K/100 m. The turbulence is modelled using realisable k-ε model, a model used in the FLUENT flow solver. In the case of the inline configuration, the upwind plume shields its downwind counterpart, which in turn allows for higher plume rise at a given temperature gradient. The plume oscillates more in the case of inline than 45° and non-inline cases. Also, for a temperature gradient of −0.5 K/100 m, the plumes oscillate violently in the vertical direction, mainly because, with the initial rise of the plume, cold air from higher altitudes moves down and forms a layer of lower temperature closer to the ground. The present study is important to highlight the plume dispersion characteristics under negative temperature gradient conditions.


2002 ◽  
Vol 9 (5) ◽  
pp. 1565-1569 ◽  
Author(s):  
Sheikh Dastgeer ◽  
Jan Weiland ◽  
Sangeeta Majahan

2013 ◽  
Vol 31 (3) ◽  
pp. 459-462 ◽  
Author(s):  
O. Onishchenko ◽  
O. Pokhotelov ◽  
V. Fedun

Abstract. In this paper, we have investigated vortex structures (e.g. convective cells) of internal gravity waves (IGWs) in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.


1964 ◽  
Vol 31 (4) ◽  
pp. 585-593 ◽  
Author(s):  
J. Walowit ◽  
S. Tsao ◽  
R. C. DiPrima

The stability of Couette flow and flow due to an azimuthal pressure gradient between arbitrarily spaced concentric cylindrical surfaces is investigated. The stability problems are solved by using the Galerkin method in conjunction with a simple set of polynomial expansion functions. Results are given for a wide range of spacings. For Couette flow, in the case that the cylinders rotate in the same direction, a simple formula for predicting the critical speed is derived. The effect of a radial temperature gradient on the stability of Couette flow is also considered. It is found that positive and negative temperature gradients are destabilizing and stabilizing, respectively.


Sign in / Sign up

Export Citation Format

Share Document