scholarly journals Multi-scale atmospheric environment modelling for urban areas

2009 ◽  
Vol 3 (1) ◽  
pp. 53-57 ◽  
Author(s):  
A. A. Baklanov ◽  
R. B. Nuterman

Abstract. Modern supercomputers allow realising multi-scale systems for assessment and forecasting of urban meteorology, air pollution and emergency preparedness and considering nesting with obstacle-resolved models. A multi-scale modelling system with downscaling from regional to city-scale with the Environment – HIgh Resolution Limited Area Model (Enviro-HIRLAM) and to micro-scale with the obstacle-resolved Micro-scale Model for Urban Environment (M2UE) is suggested and demonstrated. The M2UE validation results versus the Mock Urban Setting Trial (MUST) experiment indicate satisfactory quality of the model. Necessary conditions for the choice of nested models, building descriptions, areas and resolutions of nested models are analysed. Two-way nesting (up- and down-scaling), when scale effects both directions (from the meso-scale on the micro-scale and from the micro-scale on the meso-scale), is also discussed.

2021 ◽  
pp. 105678952110339
Author(s):  
Hongyong Jiang ◽  
Yiru Ren ◽  
Qiduo Jin

A novel synergistic multi-scale modeling framework with a coupling of micro- and meso-scale is proposed to predict damage behaviors of 2D-triaxially braided composite (2DTBC). Based on the Bridge model, the internal stress and micro damage of constituent materials are respectively coupled with the stress and damage of tow. The initial effective elastic properties of tow (IEEP) used as the predefined data are estimated by micro-mechanics models. Due to in-situ effects, stress concentration factor (SCF) is considered in the micro matrix, exhibiting progressive damage accumulation. Comparisons of IEEP and strengths between the Bridge and Chamis’ theory are conducted to validate the values of IEEP and SCF. Based on the representative volume element (RVE), the macro properties and damage modes of 2DTBC are predicted to be consistent with available experiments and meso-scale simulation. Both axial and transverse damage mechanisms of 2DTBC under tensile or compressive load are revealed. Micro fiber and matrix damage accumulations have significant effects on the meso-scale axial and transverse damage of tows due to multi-scale coupling effects. Different from existing meso-/multi-scale models, the proposed multi-scale model can capture a crucial phenomenon that the transverse damage of tow is vulnerable to micro fiber fracture. The proposed multi-scale framework provides a robust tool for future systematic studies on constituent materials level to larger-scale aeronautical materials.


2013 ◽  
Vol 554-557 ◽  
pp. 2348-2354 ◽  
Author(s):  
Pierpaolo Carlone ◽  
Gaetano S. Palazzo

Liquid Composite Molding processes are characterized by the impregnation of a dry fibrous perform by means of injection or infusion of a catalyzed resin. In recent years computational flow and cure models allowed for a remarkable time and cost compression in process planning with respect to trial and error procedures. In this contest multi-scale simulative approaches are gaining considerable attention and intriguing results have been recently presented. Most of the proposed models, however, rely on deterministic hypothesis, assuming perfect fiber packing and neglecting dimensional variations between fibers, in strong contrast with experimental observations. In this paper the influence of the stochastic variability of the fiber packing on tow permeability has been investigated by means of a CFD micro scale model. The variability of the microstructure defining the Representative Volume Element has been considered introducing random perturbations of the fiber packing. The components of the permeability tensor, in each case, have then been derived applying the Darcy model to flow simulations through the representative cell.


Author(s):  
Robert L. Jackson ◽  
Jeffrey L. Streator

This work describes a non-statistical multi-scale model of the normal contact between rough surfaces. The model produces predictions for contact area as a function of contact load, and is compared to the traditional Greenwood and Williamson (GW) and Majumdar and Bhushan (MB) rough surface contact models, which represent single-scale and fractal analyses, respectively. The current model incorporates the effect of asperity deformations at multiple scales into a simple framework for modeling the contact between nominally flat rough surfaces. Similar to the “protuberance upon protuberance” theory proposed by Archard, the model considers the effect of having smaller asperities located on top of larger asperities in repeated fashion with increasing detail down to the limits of current measurement techniques. The parameters describing the surface topography (areal asperity density and asperity radius) are calculated from an FFT performed of the surface profile. Thus, the model considers multi-scale effects, which fractal methods have addressed, while attempting to more accurately incorporate the deformation mechanics into the solution. After the FFT of a real surface is calculated, the computational resources needed for the method are very small. Perhaps surprisingly, the trends produced by this non-statistical multi-scale model are quite similar to those arising from the GW and MB models.


2019 ◽  
Author(s):  
Bert Verreyken ◽  
Jérome Brioude ◽  
Stéphanie Evan

Abstract. The FLEXible PARTicle dispersion model FLEXPART, first released in 1998, is a Lagrangian particle dispersion model developed to simulate atmospheric transport over large and meso-scale distances. Due to FLEXPART's success and its open source nature, different limited area model versions of FLEXPART were released making it possible to run FLEXPART simulations by ingesting WRF (Weather Research Forecasting model) or MM5 (meso-scale community model maintained by Penn State university) meteorological fields on top of the ECMWF (European Centre for Medium-Range Weather Forecasts) and GFS (Global Forecast System) meteorological fields. Here, we present a new FLEXPART limited area model that is compatible with the AROME mesoscale meteorological forecast model (the Applications of Research to Operations at Meso-scale model). FLEXPART-AROME was originally developed to study meso-scale transport around La Réunion, a small volcanic island in the South West Indian Ocean with a complex orographic structure which is not well represented in current global operational models. The AROME vertical hybrid sigma grid is projected on the Cartesian terrain following FLEXPART grid. We present new turbulent modes in FLEXPART-AROME. They differ from each other by: dimensionality, mixing length parameterisation, turbulent transport constraint interpretation and a novel time-step configuration. Performances of new turbulent modes are compared to the ones in FLEXPART-WRF by testing the conservation of well-mixedness by turbulence, the dispersion of a point release at the surface and the marine boundary layer evolution around Reunion island. An adaptive time step for the vertical turbulent motions has been implemented to improve conservation of well-mixedness in the model.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1191
Author(s):  
Renko Buhr ◽  
Hassan Kassem ◽  
Gerald Steinfeld ◽  
Michael Alletto ◽  
Björn Witha ◽  
...  

In wind energy site assessment, one major challenge is to represent both the local characteristics as well as general representation of the wind climate on site. Micro-scale models (e.g., Reynolds-Averaged-Navier-Stokes (RANS)) excel in the former, while meso-scale models (e.g., Weather Research and Forecasting (WRF)) in the latter. This paper presents a fast approach for meso–micro downscaling to an industry-applicable computational fluid dynamics (CFD) modeling framework. The model independent postprocessing tool chain is applied using the New European Wind Atlas (NEWA) on the meso-scale and THETA on the micro-scale side. We adapt on a previously developed methodology and extend it using a micro-scale model including stratification. We compare a single- and multi-point downscaling in critical flow situations and proof the concept on long-term mast data at Rödeser Berg in central Germany. In the longterm analysis, in respect to the pure meso-scale results, the statistical bias can be reduced up to 45% with a single-point downscaling and up to 107% (overcorrection of 7%) with a multi-point downscaling. We conclude that single-point downscaling is vital to combine meso-scale wind climate and micro-scale accuracy. The multi-point downscaling is further capable to include wind shear or veer from the meso-scale model into the downscaled velocity field. This adds both, accuracy and robustness, by minimal computational cost. The new introduction of stratification in the micro-scale model provides a marginal difference for the selected stability conditions, but gives a prospect on handling stratification in wind energy site assessment for future applications.


Author(s):  
M. Sotudeh-Chafi ◽  
N. Abolfathi ◽  
A. Nick ◽  
V. Dirisala ◽  
G. Karami ◽  
...  

Traumatic brain injuries (TBIs) involve a significant portion of human injuries resulting from a wide range of civilian accidents as well as many military scenarios. Axonal damage is one of the most common and important pathologic features of traumatic brain injury. Axons become brittle when exposed to rapid deformations associated with brain trauma. Accordingly, rapid stretch of axons can damage the axonal cytoskeleton, resulting in a loss of elasticity and impairment of axoplasmic transport. Subsequent swelling of the axon occurs in discrete bulb formations or in elongated varicosities that accumulate organelles. Ultimately, swollen axons may become disconnected [1]. The shock waves generated by a blast, subject all the organs in the head to displacement, shearing and tearing forces. The brain is especially vulnerable to these forces — the fronts of compressed air waves cause rapid forward or backward movements of the head, so that the brain rattles against the inside of the skull. This can cause subdural hemorrhage and contusions. The forces exerted on the brain by shock waves are known to damage axons in the affected areas. This axonal damage begins within minutes of injury, and can continue for hours or days following the injury [2]. Shock waves are also known to damage the brain at the subcellular level, but exactly how remains unclear. Kato et al., [3] described the effects of a small controlled explosion on rats’ brain tissue. They found that high pressure shock waves led to contusions and hemorrhage in both cortical and subcortical brain regions. Based on their result, the threshold for shock wave-induced brain injury is speculated to be under 1 MPa. This is the first report to demonstrate the pressure-dependent effect of shock wave on the histological characteristics of brain tissue. An important step in understanding the primary blast injury mechanism due to explosion is to translate the global head loads to the loading conditions, and consequently damage, of the cells at the local level and to project cell level and tissue level injury criteria towards the level of the head. In order to reach this aim, we have developed a multi-scale non-linear finite element modeling to bridge the micro- and macroscopic scales and establish the connection between microstructure and effective behavior of brain tissue to develop acceptable injury threshold. Part of this effort has been focused on measuring the shock waves created from a blast, and studying the response of the brain model of a human head exposed to such an environment. The Arbitrary Lagrangian Eulerian (ALE) and Fluid/Solid Interactions (FSI) formulation have been used to model the brain-blast interactions. Another part has gone into developing a validated fiber-matrix based micro-scale model of a brain tissue to reproduce the effective response and to capturing local details of the tissue’s deformations causing axonal injury. The micro-model of the axon and matrix is characterized by a transversely isotropic viscoelastic material and the material model is formulated for numerical implementation. Model parameters are fit to experimental frequency response of the storage and loss modulus data obtained and determined using a genetic algorithm (GA) optimizing method. The results from macro-scale model are used in the micro-scale brain tissue to study the effective behavior of this tissue under injury-based loadings. The research involves the development of a tool providing a better understanding of the mechanical behavior of the brain tissue against blast loads and a rational multi-scale approach for driving injury criteria.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4393
Author(s):  
Rui Zhou ◽  
Weicheng Gao ◽  
Wei Liu

A modified micromechanics failure criterion (MMF3) based multi-scale analysis strategy was proposed in this article to analyze the failure behaviors of the plain-woven fabric composites. The finite-element (FE) representative unit cell (RUC) models of different scales were first established, and the RUC based stress transformation methods were developed. The micro-scale strengths of the constituents in the unidirectional laminate were achieved based on the tested macro-scale strengths. Under the micro-scale strength invariance hypothesis, the meso-scale strengths of the fiber tows from the plain-woven fabric composites were back-calculated first and were then validated and corrected with the assistance of tested strengths of the fabric laminates. With the micro-scale RUC and the calculated meso-scale strengths of the fiber tows, the micro-scale strengths of the constituents suitable for the plain-woven fabric composites were determined. The multi-scale analysis procedure for the plain-woven fabric composites was then established in providing a more direct failure observation at the constituent level. Open-hole compression specimens were tested according to the ASTM standard D6484, and the failure of the open-hole fabric laminate was simulated with the proposed multi-scale strategy. The numerical predictions were in good agreement with the experimental results, and the feasibility of the multi-scale strategy was validated.


2019 ◽  
Vol 16 ◽  
pp. 63-68
Author(s):  
Martin Belluš ◽  
Florian Weidle ◽  
Christoph Wittmann ◽  
Yong Wang ◽  
Simona Taşku ◽  
...  

Abstract. A meso-scale ensemble system Aire Limitée Adaptation dynamique Développement InterNational – Limited Area Ensemble Forecasting (ALADIN-LAEF) based on the limited area model ALADIN has been developed in the framework of Regional Cooperation for Limited Area modelling in Central Europe (RC LACE) consortium, focusing on short range probabilistic forecasts and profiting from advanced multi-scale ALARO physics. Its main purpose is to provide probabilistic forecast on daily basis for the national weather services of RC LACE partners. It also serves as a reliable source of probabilistic information applied to downstream hydrology and energy industry.


Author(s):  
Rafael Cámara Artigas ◽  
Fernando Díaz del Olmo ◽  
Jose Ramon Martinez Batlle

An analytical and cartographic method of biomass distribution and plant formations at a multi-scalar level is developed based on bioclimatic variables extracted from the Thornthwaite Water Balance (WB) and the Bioclimatic Balances (BB) of Montero de Burgos & González Rebollar. As a result, a distribution map involving Types of Bioclimatic Regimens (TBR) is obtained leading to the identification of a multi-scale classification at different levels: zonal (macro-scale) with 5 types, regional (meso-scale) with 27 types, and local (micro-scale) with 162 plant formations subtypes, conditioned by lithology-soils, the relief exposure to wind or sunstroke respectively and obtained through the combination of TBR and ombroclimates.


Sign in / Sign up

Export Citation Format

Share Document