scholarly journals Detection and attribution of global change effects on river nutrient dynamics in a large Mediterranean basin

2015 ◽  
Vol 12 (13) ◽  
pp. 4085-4098 ◽  
Author(s):  
R. Aguilera ◽  
R. Marcé ◽  
S. Sabater

Abstract. Attributing changes in river water quality to specific factors is challenging because multiple factors act at different temporal and spatial scales, and it often requires examining long-term series of continuous data. Data consistency is sometimes hindered by the lack of observations of relevant water quality variables and the low and uneven sampling frequency that characterizes many water quality monitoring schemes. Nitrate and dissolved phosphate concentration time series (1980–2011) from 50 sampling stations across a large Mediterranean river basin were analyzed to disentangle the role of hydrology, land-use practices, and global climatic phenomena on the observed nutrient patterns, with the final aim of understanding how the different aspects of global change affected nutrient dynamics in the basin. Dynamic factor analysis (DFA) provided the methodological framework to extract underlying common patterns in nutrient time series with missing observations. Using complementary methods such as frequency and trend analyses, we sought to further characterize the common patterns and identify the drivers behind their variability across time and space. Seasonal and other cyclic patterns were identified as well as trends of increase or decrease of nutrient concentration in particular areas of the basin. Overall, the impact of global change, which includes both climate change and anthropogenic impacts, on the dynamics of nitrate concentration across the study basin was found to be a multifaceted process including regional and global factors, such as climatic oscillations and agricultural irrigation practices, whereas impacts on phosphate concentration seemed to depend more on local impacts, such as urban and industrial activities, and less on large-scale factors.

2015 ◽  
Vol 12 (7) ◽  
pp. 5259-5291
Author(s):  
R. Aguilera ◽  
R. Marcé ◽  
S. Sabater

Abstract. Attributing changes in river water quality to specific factors is challenging because multiple factors act at different temporal and spatial scales, and it often requires examining long-term series of continuous data. But data consistency is sometimes hindered by the lack of observations of relevant water quality variables and the low and uneven sampling frequency that characterize many water quality monitoring schemes. Nitrate and dissolved phosphate concentration time-series (1980–2011) from 50 sampling stations across a large Mediterranean river basin were analyzed to disentangle the role of hydrology, land-use practices, and global climatic phenomena on the observed nutrient patterns, with the final aim of understanding how the different aspects of global change affected nutrient dynamics in the basin. Dynamic Factor Analysis (DFA) provided the methodological framework to extract underlying common patterns in nutrient time-series with missing observations. Using complementary methods such as frequency and trend analyses, we sought to further characterize the common patterns and identify the drivers behind their variability across time and space. Seasonal and other cyclic patterns were identified, as well as trends of increase or decrease of nutrient concentration in particular areas of the basin. Overall, the impact of global change, which includes both climate change and anthropogenic impacts, on the dynamics of nitrate concentration across the study basin was found to be a multifaceted process including regional and global factors, such as climatic oscillations and agricultural irrigation practices, whereas impacts on phosphate concentration seemed to depend more on local impacts, such as urban and industrial activities, and less on large-scale factors.


2020 ◽  
Vol 12 (19) ◽  
pp. 3207
Author(s):  
Ioannis Papoutsis ◽  
Charalampos Kontoes ◽  
Stavroula Alatza ◽  
Alexis Apostolakis ◽  
Constantinos Loupasakis

Advances in synthetic aperture radar (SAR) interferometry have enabled the seamless monitoring of the Earth’s crust deformation. The dense archive of the Sentinel-1 Copernicus mission provides unprecedented spatial and temporal coverage; however, time-series analysis of such big data volumes requires high computational efficiency. We present a parallelized-PSI (P-PSI), a novel, parallelized, and end-to-end processing chain for the fully automated assessment of line-of-sight ground velocities through persistent scatterer interferometry (PSI), tailored to scale to the vast multitemporal archive of Sentinel-1 data. P-PSI is designed to transparently access different and complementary Sentinel-1 repositories, and download the appropriate datasets for PSI. To make it efficient for large-scale applications, we re-engineered and parallelized interferogram creation and multitemporal interferometric processing, and introduced distributed implementations to best use computing cores and provide resourceful storage management. We propose a new algorithm to further enhance the processing efficiency, which establishes a non-uniform patch grid considering land use, based on the expected number of persistent scatterers. P-PSI achieves an overall speed-up by a factor of five for a full Sentinel-1 frame for processing in a 20-core server. The processing chain is tested on a large-scale project to calculate and monitor deformation patterns over the entire extent of the Greek territory—our own Interferometric SAR (InSAR) Greece project. Time-series InSAR analysis was performed on volumes of about 12 TB input data corresponding to more than 760 Single Look Complex Sentinel-1A and B images mostly covering mainland Greece in the period of 2015–2019. InSAR Greece provides detailed ground motion information on more than 12 million distinct locations, providing completely new insights into the impact of geophysical and anthropogenic activities at this geographic scale. This new information is critical to enhancing our understanding of the underlying mechanisms, providing valuable input into risk assessment models. We showcase this through the identification of various characteristic geohazard locations in Greece and discuss their criticality. The selected geohazard locations, among a thousand, cover a wide range of catastrophic events including landslides, land subsidence, and structural failures of various scales, ranging from a few hundredths of square meters up to the basin scale. The study enriches the large catalog of geophysical related phenomena maintained by the GeObservatory portal of the Center of Earth Observation Research and Satellite Remote Sensing BEYOND of the National Observatory of Athens for the opening of new knowledge to the wider scientific community.


2019 ◽  
Vol 12 (1) ◽  
pp. 45 ◽  
Author(s):  
Jiaqi Chen ◽  
Jiming Lv ◽  
Ning Li ◽  
Qingwei Wang ◽  
Jian Wang

There are a large number of lakes with beaded distribution in the semi-arid areas of the Inner Mongolian Plateau, and some of them have degraded or even disappeared during the past three decades. We studied the reasons of the disappearance of these lakes by determining the way of replenishment of these lakes and the impact of the natural-social environment of the basin, with the aim of saving these gradually disappearing lakes. Based on remote sensing image and hydrological analysis, this paper studied the recharge of Daihai Lake and Huangqihai Lake. The deep learning method was used to establish the time-series of lake evolution. The same method was combined with the innovative woodland and farmland extraction method to set up the time-series of ground classification composition in the basins. Using relevant survey data, combined with soil water infiltration test, water chemical, and isotopic signature analysis of various water bodies, we found that the Daihai Lake area is the largest in dry season and the smallest in rainy season and the other lake is not satisfied with this phenomenon. In addition, we calculated the specific recharge and consumption of the study basin. These experiments indicated that the exogenous groundwater is recharged directly through the faults at the bottom of Daihai Lake, while the exogenous groundwater is recharged in Huangqihai Lake through rivers indirectly. Large-scale exploitation of groundwater for agricultural irrigation and industrial production is the main cause of lake degradation. Reducing the extraction of groundwater for agricultural irrigation is an important measure to restore lake ecology.


2019 ◽  
Vol 627 ◽  
pp. A131 ◽  
Author(s):  
M. Cousin ◽  
P. Guillard ◽  
M. D. Lehnert

Context. Star formation in galaxies is inefficient, and understanding how star formation is regulated in galaxies is one of the most fundamental challenges of contemporary astrophysics. Radiative cooling, feedback from supernovae and active galactic nuclei (AGN), and large-scale dynamics and dissipation of turbulent energy act over various time and spatial scales and all regulate star formation in a complex gas cycle. Aims. This paper presents the physics implemented in a new semi-analytical model of galaxy formation and evolution called the Galaxy Assembler from dark-matter Simulation (G.A.S.). Methods. The fundamental underpinning of our new model is the development of a multiphase interstellar medium (ISM) in which energy produced by supernovae and AGN maintains an equilibrium between a diffuse, hot, and stable gas and a cooler, clumpy, and low-volume filling factor gas. The hot gas is susceptible to thermal and dynamical instabilities. We include a description of how turbulence leads to the formation of giant molecular clouds through an inertial turbulent energy cascade, assuming a constant kinetic energy transfer per unit volume. We explicitly modelled the evolution of the velocity dispersion at different scales of the cascade and accounted for thermal instabilities in the hot halo gas. Thermal instabilities effectively reduce the impact of radiative cooling and moderates accretion rates onto galaxies, and in particular, for those residing in massive haloes. Results. We show that rapid and multiple exchanges between diffuse and unstable gas phases strongly regulates star formation rates in galaxies because only a small fraction of the unstable gas is forming stars. We checked that the characteristic timescales describing the gas cycle, gas depletion timescale, and star-forming laws at different scales are in good agreement with observations. For high-mass haloes and galaxies, cooling is naturally regulated by the growth of thermal instabilities, so we do not need to implement strong AGN feedback in this model. Our results are also in good agreement with the observed stellar mass function from z ≃ 6.0 to z ≃ 0.5. Conclusion. Our model offers the flexibility to test the impact of various physical processes on the regulation of star formation on a representative population of galaxies across cosmic times. Thermal instabilities and the cascade of turbulent energy in the dense gas phase introduce a delay between gas accretion and star formation, which keeps galaxy growth inefficient in the early Universe. The main results presented in this paper, such as stellar mass functions, are available in the GALAKSIENN library.


2012 ◽  
Vol 12 (19) ◽  
pp. 9335-9353 ◽  
Author(s):  
H. G. Ouwersloot ◽  
J. Vilà-Guerau de Arellano ◽  
A. C. Nölscher ◽  
M. C. Krol ◽  
L. N. Ganzeveld ◽  
...  

Abstract. We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data.


1984 ◽  
Vol 11 (4) ◽  
pp. 331-344 ◽  
Author(s):  
Frances B. Michaelis

Considerable public and political debate over the environmental consequences of large-scale operations associated with Tasmania's export forest industries prompted the present review and continuing field-studies. There are no known publications on the effect of forestry on inland waters of Tasmania, but relevant research in the Northern Hemisphere, the Australian mainland, and New Zealand, is summarized.Forest operations considered are roading, logging, and burning. In general, roading increases water-yield, reduces water quality, and modifies the physical structure of streams—particularly at bridge-sites. The impact of logging depends on the harvesting method used (generally, tractor and skidder-logging in Tasmania), the proportion of trees felled, the proportion of the catchment logged, and the precautions taken. However, stream-flows, sediment loads, nutrient levels, dissolved inorganic materials, and wood debris, all increase with logging. If riparian vegetation is cut, water temperature usually increases in summer and decreases slightly in winter, but temperature tolerances of most aquatic animals in Tasmania remain unknown. The effects of burning Australian forests are poorly understood, but there are changes in water-yield and a decrease in water quality.


2017 ◽  
Vol 20 (2) ◽  
pp. 424-439 ◽  
Author(s):  
Hooman Armand ◽  
Ivan Stoianov ◽  
Nigel Graham

Abstract The sectorisation of water supply networks (WSNs) includes the permanent closure of valves in order to achieve a cost-effective leakage management and simplify pressure control. The impact of networks sectorisation, also known as district metered areas (DMAs), on water quality and discolouration has not been extensively studied and it remains unknown. In addition, hydraulic variables used in the literature for assessing the likelihood of potential discolouration are limited and inconclusive. This paper investigates a methodology to evaluate the impact of networks sectorisation (DMAs) on water quality and the likelihood of discolouration incidents. The methodology utilises a set of surrogate hydraulic variables and an analysis of the hydraulic condition in pipes with historic discolouration complaints. The proposed methodology has been applied to a large-scale WSN, with and without sectors, in order to assess the potential impact of DMAs on water quality. The results demonstrate that the sectorisation of WSN (DMAs) could compromise the overall water quality and increase the likelihood of discolouration incidents. The results of this study and the proposed surrogate hydraulic variables facilitate the formulation of optimisation problems for the re-design and control of WSNs with sectorised topologies.


2016 ◽  
Vol 13 (6) ◽  
pp. 1863-1875 ◽  
Author(s):  
Zahra Thomas ◽  
Benjamin W. Abbott ◽  
Olivier Troccaz ◽  
Jacques Baudry ◽  
Gilles Pinay

Abstract. Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43−) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and the probability of human disturbance provides a useful perspective for evaluating vulnerability of aquatic ecosystems and for managing systems to maintain agricultural production while minimizing leakage of nutrients.


Sign in / Sign up

Export Citation Format

Share Document