scholarly journals Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period

2021 ◽  
Vol 18 (6) ◽  
pp. 2119-2137
Author(s):  
Natacha Le Grix ◽  
Jakob Zscheischler ◽  
Charlotte Laufkötter ◽  
Cecile S. Rousseaux ◽  
Thomas L. Frölicher

Abstract. Extreme events in the ocean severely impact marine organisms and ecosystems. Of particular concern are compound events, i.e., when conditions are extreme for multiple potential ocean ecosystem stressors such as temperature and chlorophyll. Yet, little is known about the occurrence, intensity, and duration of such compound high-temperature (a.k.a. marine heatwaves – MHWs) and low-chlorophyll (LChl) extreme events, whether their distributions have changed in the past decades, and what the potential drivers are. Here we use satellite-based sea surface temperature and chlorophyll concentration estimates to provide a first assessment of such compound extreme events. We reveal hotspots of compound MHW and LChl events in the equatorial Pacific, along the boundaries of the subtropical gyres, in the northern Indian Ocean, and around Antarctica. In these regions, compound events that typically last 1 week occur 3 to 7 times more often than expected under the assumption of independence between MHWs and LChl events. The occurrence of compound MHW and LChl events varies on seasonal to interannual timescales. At the seasonal timescale, most compound events occur in summer in both hemispheres. At the interannual timescale, the frequency of compound MHW and LChl events is strongly modulated by large-scale modes of natural climate variability such as the El Niño–Southern Oscillation, whose positive phase is associated with increased compound event occurrence in the eastern equatorial Pacific and in the Indian Ocean by a factor of up to 4. Our results provide a first understanding of where, when, and why compound MHW and LChl events occur. Further studies are needed to identify the exact physical and biological drivers of these potentially harmful events in the ocean and their evolution under global warming.

2020 ◽  
Author(s):  
Natacha Le Grix ◽  
Jakob Zscheischler ◽  
Charlotte Laufkötter ◽  
Cécile S. Rousseaux ◽  
Thomas L. Frölicher

Abstract. Extreme events severely impact marine organisms and ecosystems. Of particular concern are compound events, i.e., when conditions are extreme for multiple potential ecosystem stressors such as temperature and chlorophyll. Yet, little is known about the occurrence, intensity and duration of such compound high temperature (aka marine heatwaves – MHWs) and low chlorophyll (LChl) extreme events, whether their distributions have changed in the past decades and what the potential drivers are. Here we use satellite-based sea surface temperature and chlorophyll concentration estimates to provide a first assessment of such compound extreme events. We reveal hotspots of compound MHW and LChl events in the equatorial Pacific, along the boundaries of the subtropical gyres, in the northern Indian Ocean, and around Antarctica. In these regions, compound events that typically last one week occur three to seven times more often than expected under the assumption of independence between MHWs and LChl events. The occurrence of compound MHW and LChl events varies on seasonal to interannual timescales. At the seasonal timescale, most compound events occur in summer in both hemispheres. At the interannual time-scale, the frequency of compound MHW and LChl events is strongly modulated by large-scale modes of natural climate variability such as the El Niño-Southern Oscillation, whose positive phase is associated with increased compound event occurrence in the eastern equatorial Pacific and in the Indian Ocean by a factor of up to four. Our results provide a first understanding of where, when and why compound MHW and LChl events occur. Further studies are needed to identify the exact physical and biological drivers of these potentially harmful events in the ocean and their evolution under global warming.


2009 ◽  
Vol 22 (19) ◽  
pp. 5046-5071 ◽  
Author(s):  
Wenju Cai ◽  
Arnold Sullivan ◽  
Tim Cowan

Abstract The present study assesses the ability of climate models to simulate rainfall teleconnections with the El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD). An assessment is provided on 24 climate models that constitute phase 3 of the World Climate Research Programme’s Coupled Model Intercomparison Project (WCRP CMIP3), used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The strength of the ENSO–rainfall teleconnection, defined as the correlation between rainfall and Niño-3.4, is overwhelmingly controlled by the amplitude of ENSO signals relative to stochastic noise, highlighting the importance of realistically simulating this parameter. Because ENSO influences arise from the movement of convergence zones from their mean positions, the well-known equatorial Pacific climatological sea surface temperature (SST) and ENSO cold tongue anomaly biases lead to systematic errors. The climatological SSTs, which are far too cold along the Pacific equator, lead to a complete “nonresponse to ENSO” along the central and/or eastern equatorial Pacific in the majority of models. ENSO anomalies are also too equatorially confined and extend too far west, with linkages to a weakness in the teleconnection with Hawaii boreal winter rainfall and an inducement of a teleconnection with rainfall over west Papua New Guinea in austral summer. Another consequence of the ENSO cold tongue bias is that the majority of models produce too strong a coherence between SST anomalies in the west, central, and eastern equatorial Pacific. Consequently, the models’ ability in terms of producing differences in the impacts by ENSO from those by ENSO Modoki is reduced. Similarly, the IOD–rainfall teleconnection strengthens with an intensification of the IOD relative to the stochastic noise. A significant relationship exists between intermodel variations of IOD–ENSO coherence and intermodel variations of the ENSO amplitude in a small subset of models in which the ENSO anomaly structure and ENSO signal transmission to the Indian Ocean are better simulated. However, using all but one model (defined as an outlier) there is no systematic linkage between ENSO amplitude and IOD–ENSO coherence. Indeed, the majority of models produce an ENSO–IOD coherence lower than the observed, supporting the notion that the Indian Ocean has the ability to generate independent variability and that ENSO is not the only trigger of the IOD. Although models with a stronger IOD amplitude and rainfall teleconnection tend to have a greater ENSO amplitude, there is no causal relationship; instead this feature reflects a commensurate strength of the Bjerknes feedback in both the Indian and Pacific Oceans.


2021 ◽  
Author(s):  
Waqar Ul Hassan ◽  
Munir Ahmad Nayak

<p>Compound weather events arise from combination of multiple climatic drivers or hazards and often result in disastrous socio-economic impacts. Compound drought and heatwave (CDHE) events have received considerable attention in recent years, but limited attention is given towards the understanding of feedback relationships between droughts and heatwaves at global hotspots of the compound events. Here, we identify the potential hotspots of extreme compound drought and heatwaves (ECDH) over the globe using standardized precipitation index (SPI) and Excess heat factor (EHF) as metrics for droughts and heatwaves, respectively. Besides the well know positive feedback between droughts and heatwaves, i.e., heatwaves amplify droughts and vice-versa, we hypothesize and test the possibility of negative feedback at distinct hotspots where heatwaves tend to abate droughts. Multiple hotspots were identified with positive and negative feedbacks among drought and heatwave intensities, supporting our hypothesis. We also analyzed the role of different local and large-scale global drivers (such as El-Niño Southern Oscillation) on the feedbacks at the hotspots. Our analysis has implications in predicting extreme compound droughts and heatwaves and provides new insights that will foster further research in this direction.</p>


1998 ◽  
Vol 17 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Alyssa Peleo-Alampay ◽  
David Bukry ◽  
Li Liu ◽  
Jeremy R. Young

Abstract. A systematic study on the evolution and stratigraphic distribution of the species of Catinaster from several DSDP/ODP sites with magnetostratigraphic records is presented. The evolution of Catinaster from Discoaster is established by documentation of a transitional nannofossil species, Discoaster transitus. Two new subspecies, Catinaster coalitus extensus and Catinaster calyculus rectus are defined which appear to be intermediates in the evolution of Catinaster coalitus coalitus to Catinaster calyculus calyculus. The first occurrence of C. coalitus is shown to be in the lower part of C5n.2n at 10.7–10.9 Ma in the low to mid–latitude Atlantic and Pacific Oceans. The last occurrence of C. coalitus coalitus varies from the upper part of C5n.2n to the lower portion of C4A. Magnetobiostratigraphic evidence suggests that the FO of C. calyculus rectus is diachronous. Catinaster mexicanus occurs in the late Miocene and has been found only in the eastern equatorial Pacific, the Indian Ocean and the Gulf of Mexico.


2010 ◽  
Vol 23 (6) ◽  
pp. 1334-1353 ◽  
Author(s):  
Juan Feng ◽  
Jianping Li ◽  
Yun Li

Abstract Using the NCEP–NCAR reanalysis, the 40-yr ECMWF Re-Analysis (ERA-40), and precipitation data from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Australian Bureau of Meteorology, the variability and circulation features influencing southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is called the southwest Australian circulation (SWAC) because of its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land–sea thermal contrast. The seasonal march of the SWAC in extended winter (May–October) is demonstrated by pentad data. An index based on the dynamics’ normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May–July) and late (August–October) winter. In weaker winter SWAC years, there is an anticyclonic anomaly over the southern Indian Ocean resulting in weaker westerlies and northerlies, which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter but also the long-term drying trend over SWWA in early winter. The well-coupled SWAC–SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the southern annular mode (SAM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA. The external forcing of the SWAC is also explored in this study.


2013 ◽  
Vol 13 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Madan Sigdel ◽  
Motoyoshi Ikeda

Summer precipitation dominates over winter one for the annual total in south Asia, while the winter condition is still important for agricultural productions. Rain gauge data over Nepal were analyzed with large-scale atmospheric patterns such as El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). In the period of June to September, summer monsoon rainfall over Nepal (SMRN) is generally higher in the eastern region along with a peak in the central region associated with the local orography. Its interannual variability was found to be correlated with the southern oscillation index (SOI): i.e., when La Niña occurs, eastward moisture flux is blocked over Bay of Bengal (BOB) by the anomalous Walker circulation extending from the Pacific. The local-scale condition for higher SMRN is implied by a main moisture route along the eastern arm of the low pressure in northeastern India, as proved by a significant correlation between SMRN and the northward moisture flux. In winter (DJFM), precipitation occurs more in the western region. The higher winter precipitation over Nepal (WPN) was correlated almost equally with positive Dipole Mode Index (DMI) over the Indian Ocean and also SOI, while the relationship with SOI is reversed from summer. A clear linkage was suggested with moisture flux from the Arabian Sea and the further western region. Thus, possible impacts of anomalous precipitation have to be predicted under the relationship with the large-scale indices depending on seasons. Nepal Journal of Science and Technology Vol. 13, No. 1 (2012) 115-123 DOI: http://dx.doi.org/10.3126/njst.v13i1.7450


2007 ◽  
Vol 20 (19) ◽  
pp. 4899-4919 ◽  
Author(s):  
A. Timmermann ◽  
Y. Okumura ◽  
S.-I. An ◽  
A. Clement ◽  
B. Dong ◽  
...  

Abstract The influences of a substantial weakening of the Atlantic meridional overturning circulation (AMOC) on the tropical Pacific climate mean state, the annual cycle, and ENSO variability are studied using five different coupled general circulation models (CGCMs). In the CGCMs, a substantial weakening of the AMOC is induced by adding freshwater flux forcing in the northern North Atlantic. In response, the well-known surface temperature dipole in the low-latitude Atlantic is established, which reorganizes the large-scale tropical atmospheric circulation by increasing the northeasterly trade winds. This leads to a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic and also the eastern tropical Pacific. Because of evaporative fluxes, mixing, and changes in Ekman divergence, a meridional temperature anomaly is generated in the northeastern tropical Pacific, which leads to the development of a meridionally symmetric thermal background state. In four out of five CGCMs this leads to a substantial weakening of the annual cycle in the eastern equatorial Pacific and a subsequent intensification of ENSO variability due to nonlinear interactions. In one of the CGCM simulations, an ENSO intensification occurs as a result of a zonal mean thermocline shoaling. Analysis suggests that the atmospheric circulation changes forced by tropical Atlantic SSTs can easily influence the large-scale atmospheric circulation and hence tropical eastern Pacific climate. Furthermore, it is concluded that the existence of the present-day tropical Pacific cold tongue complex and the annual cycle in the eastern equatorial Pacific are partly controlled by the strength of the AMOC. The results may have important implications for the interpretation of global multidecadal variability and paleo-proxy data.


2010 ◽  
Vol 23 (16) ◽  
pp. 4375-4394 ◽  
Author(s):  
Xuebin Zhang ◽  
Michael J. McPhaden

Abstract The authors use a new and novel heat balance formalism for the upper 50 m of the Niño-3 region (5°N–5°S, 90°–150°W) to investigate the oceanographic processes underlying interannual sea surface temperature (SST) variations in the eastern equatorial Pacific. The focus is on a better understanding of the relationship between local and remote atmospheric forcing in generating SST anomalies associated with El Niño–Southern Oscillation (ENSO) events. The heat balance analysis indicates that heat advection across 50-m depth and across 150°W are the important oceanic mechanisms responsible for temperature variations with the former being dominant. On the other hand, net surface heat flux adjusted for penetrative radiation damps SST. Jointly, these processes can explain most of interannual variations in temperature tendency averaged over the Niño-3 region. Decomposition of vertical advection across the bottom indicates that the mean seasonal advection of anomalous temperature (the so-called thermocline feedback) dominates and is highly correlated with 20°C isotherm depth variations, which are mainly forced by remote winds in the western and central equatorial Pacific. Temperature advection by anomalous vertical velocity (the “Ekman feedback”), which is highly correlated with local zonal wind stress variations, is smaller with an amplitude of about 40% on average of remotely forced vertical heat advection. These results support those of recent empirical and modeling studies in which local atmospheric forcing, while not dominant, significantly affects ENSO SST variations in the eastern equatorial Pacific.


2014 ◽  
Vol 53 (5) ◽  
pp. 1193-1212 ◽  
Author(s):  
Taesam Lee ◽  
Changsam Jeong

AbstractIn the frequency analyses of extreme hydrometeorological events, the restriction of statistical independence and identical distribution (iid) from year to year ensures that all observations are from the same population. In recent decades, the iid assumption for extreme events has been shown to be invalid in many cases because long-term climate variability resulting from phenomena such as the Pacific decadal variability and El Niño–Southern Oscillation may induce varying meteorological systems such as persistent wet years and dry years. Therefore, the objective of the current study is to propose a new parameter estimation method for probability distribution models to more accurately predict the magnitude of future extreme events when the iid assumption of probability distributions for large-scale climate variability is not adequate. The proposed parameter estimation is based on a metaheuristic approach and is derived from the objective function of the rth power probability-weighted sum of observations in increasing order. The combination of two distributions, gamma and generalized extreme value (GEV), was fitted to the GEV distribution in a simulation study. In addition, a case study examining the annual hourly maximum precipitation of all stations in South Korea was performed to evaluate the performance of the proposed approach. The results of the simulation study and case study indicate that the proposed metaheuristic parameter estimation method is an effective alternative for accurately selecting the rth power when the iid assumption of extreme hydrometeorological events is not valid for large-scale climate variability. The maximum likelihood estimate is more accurate with a low mixing probability, and the probability-weighted moment method is a moderately effective option.


2021 ◽  
Author(s):  
Brady Ferster ◽  
Alexey Fedorov ◽  
Juliette Mignot ◽  
Eric Guilyardi

<p>Since the start of the 21st century, El Niño-Southern Oscillation (ENSO) variability has changed, supporting generally weaker Central Pacific El Niño events. Recent studies suggest that stronger trade winds in the equatorial Pacific could be a key driving force contributing to this shift. One possible mechanism to drive such changes in the mean tropical Pacific climate state is the enhanced warming trends in the tropical Indian Ocean (TIO) relative to the rest of the tropics. TIO warming can affect the Walker circulation in both the Pacific and Atlantic basins by inducing quasi-stationary Kelvin and Rossby wave patterns. Using the latest coupled-model from Insitut Pierre Simon Laplace (IPSL-CM6), ensemble experiments are conducted to investigate the effect of TIO sea surface temperature (SST) on ENSO variability. Applying a weak SST nudging over the TIO region, in four ensemble experiments we change mean Indian ocean SST by -1.4°C, -0.7°C, +0.7°C, and +1.4°C and find that TIO warming changes the magnitude of the mean equatorial Pacific zonal wind stress proportionally to the imposed forcing, with stronger trades winds corresponding to a warmer TIO. Surprisingly, ENSO variability increases in both TIO cooling and warming experiments, relative to the control. While a stronger ENSO for weaker trade winds, associated with TIO cooling, is expected from previous studies, we argue that the ENSO strengthening for stronger trade winds, associated with TIO cooling, is related to the induced changes in ocean stratification. We illustrate this effect by computing different contributions to the Bjerknes stability index. Thus, our results suggest that the tropical Indian ocean temperatures are an important regulator of TIO mean state and ENSO dynamics.</p>


Sign in / Sign up

Export Citation Format

Share Document