scholarly journals Efficient removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm Archipelago, Baltic Sea

Author(s):  
Niels A. G. M. van Helmond ◽  
Elizabeth K. Robertson ◽  
Daniel J. Conley ◽  
Martijn Hermans ◽  
Christoph Humborg ◽  
...  

Abstract. Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm Archipelago. Bottom water concentrations of oxygen and P are inversely correlated. This is attributed to the seasonal release of P from iron (Fe)-oxide-bound P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water, linked to prior deposition of organic-rich sediments in a low oxygen setting (legacy of hypoxia), hinders the formation of a larger Fe-oxide-bound P pool in winter. Burial rates of P are high at all sites (0.03–0.3 mol m−2 y−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (~ 30 to 50 μmol g−1). Organic P accounts for 30–50 % of reactive P burial. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink-switching of organic or Fe-oxide bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1), efficiently removing N as N2. Denitrification rates decrease seaward following the decline in bottom water nitrate and sediment organic carbon. Our results explain how sediments in this eutrophic coastal system can efficiently remove land-derived P and N, regardless of whether the bottom waters are oxic or frequently hypoxic. Hence, management strategies involving artificial reoxygenation are not expected to be successful in removing P and N, emphasizing a need for a focus on nutrient load reductions.

2020 ◽  
Vol 17 (10) ◽  
pp. 2745-2766 ◽  
Author(s):  
Niels A. G. M. van Helmond ◽  
Elizabeth K. Robertson ◽  
Daniel J. Conley ◽  
Martijn Hermans ◽  
Christoph Humborg ◽  
...  

Abstract. Coastal systems can act as filters for anthropogenic nutrient input into marine environments. Here, we assess the processes controlling the removal of phosphorus (P) and nitrogen (N) for four sites in the eutrophic Stockholm archipelago. Bottom water concentrations of oxygen (O2) and P are inversely correlated. This is attributed to the seasonal release of P from iron-oxide-bound (Fe-oxide-bound) P in surface sediments and from degrading organic matter. The abundant presence of sulfide in the pore water and its high upward flux towards the sediment surface (∼4 to 8 mmol m−2 d−1), linked to prior deposition of organic-rich sediments in a low-O2 setting (“legacy of hypoxia”), hinder the formation of a larger Fe-oxide-bound P pool in winter. This is most pronounced at sites where water column mixing is naturally relatively low and where low bottom water O2 concentrations prevail in summer. Burial rates of P are high at all sites (0.03–0.3 mol m−2 yr−1), a combined result of high sedimentation rates (0.5 to 3.5 cm yr−1) and high sedimentary P at depth (∼30 to 50 µmol g−1). Sedimentary P is dominated by Fe-bound P and organic P at the sediment surface and by organic P, authigenic Ca-P and detrital P at depth. Apart from one site in the inner archipelago, where a vivianite-type Fe(II)-P mineral is likely present at depth, there is little evidence for sink switching of organic or Fe-oxide-bound P to authigenic P minerals. Denitrification is the major benthic nitrate-reducing process at all sites (0.09 to 1.7 mmol m−2 d−1) with rates decreasing seaward from the inner to outer archipelago. Our results explain how sediments in this eutrophic coastal system can remove P through burial at a relatively high rate, regardless of whether the bottom waters are oxic or (frequently) hypoxic. Our results suggest that benthic N processes undergo annual cycles of removal and recycling in response to hypoxic conditions. Further nutrient load reductions are expected to contribute to the recovery of the eutrophic Stockholm archipelago from hypoxia. Based on the dominant pathways of P and N removal identified in this study, it is expected that the sediments will continue to remove part of the P and N loads.


2015 ◽  
Vol 66 (8) ◽  
pp. 719 ◽  
Author(s):  
Min-Chul Jang ◽  
Kyoungsoon Shin ◽  
Pung-Guk Jang ◽  
Woo-Jin Lee ◽  
Keun-Hyung Choi

A 2-year survey of seawater chemistry and mesozooplankton abundance was carried out in Masan Bay, South Korea, one of the most eutrophic coastal ecosystems known. The study aimed to identify the major factors contributing to the seasonally persistent hypoxia in the bay, to characterise the Bay’s mesozooplankton community and to examine the effects of low oxygen on the distribution of mesozooplankton. Hypoxia (<2mgO2L–1) was present only in summer, with ultrahypoxia (<0.2mg O2 L–1) in the bottom waters of the inner bay in both years. Low summer oxygen can be attributed to high summer phytoplankton stocks, together with reduced oxygen solubility at high temperature and stratification of the water column that limits downward diffusion of oxygen. A seasonally and spatially distinct mesozooplankton community was identified in summer when there was greater influence of freshwater discharge in the inner bay. Marine cladocerans were very abundant, with a population outburst of Penilia avirostris in the inner bay (>4000 individuals m–3) during summer. During hypoxic events, the abundance of Penilia avirostris was positively related to oxygen levels in the bottom water, suggesting that hypoxic conditions may cause mortality or have sublethal negative effects on population growth of this filter-feeding cladoceran.


2012 ◽  
Vol 9 (8) ◽  
pp. 11517-11575 ◽  
Author(s):  
A. W. Dale ◽  
V. J. Bertics ◽  
T. Treude ◽  
S. Sommer ◽  
K. Wallmann

Abstract. This study presents benthic data from 12 samplings from February to December 2010 in a 2 m deep channel in the southwest Baltic Sea. In winter, the distribution of solutes in the porewater was strongly modulated by bioirrigation which efficiently flushed the upper 1 cm of sediment, leading to concentrations which varied little from bottom water values. Solute pumping by bioirrigation fell sharply in summer as the bottom waters became severely hypoxic (<2 μM O2). At this point the giant sulfide-oxidizing bacteria Beggiatoa was visible on surface sediments. Despite an increase in O2following mixing of the water column in November, macrofauna remained absent until the end of the sampling. Contrary to expectations, metabolites such as dissolved inorganic carbon, ammonium and hydrogen sulfide did not accumulate in the porewater during the hypoxic period when bioirrigation was absent, but instead tended toward bottom water values. This was taken as evidence for episodic bubbling of methane gas out of the sediment acting as an abiogenic irrigation process. Escaping bubble may provide a pathway for enhanced nutrient release to the bottom water and exacerbate the feedbacks with hypoxia. Subsurface dissolved phosphate (TPO4) peaks in excess of 400 μM developed in autumn resulting in a very large diffusive TPO4 flux to the water column of 0.7 ± 0.2 mmol m−2 d−1. The model was not able to simulate this TPO4 source as release of iron-bound P (Fe–P) or organic P. As an alternative hypothesis, the TPO4 peak was reproduced using new kinetic expressions that allow Beggiatoa to take up porewater TPO4 and accumulate an intracellular P pool during periods with oxic bottom waters. TPO4 is then released during hypoxia, as previous published results with sulfide-oxidizing bacteria indicate. The TPO4 added to the porewater over the year by organic P and Fe–P is recycled though Beggiatoa, meaning that no additional source of TPO4 is needed to explain the TPO4 peak. Further experimental studies are needed to strengthen this conclusion and rule out Fe–P and organic P as candidate sources of ephemeral TPO4 release. A measured C/P ratio of <20 for the diffusive flux at the sediment surface during hypoxia directly demonstrates preferential release of P relative to C under low oxygen bottom waters. Our results suggest that sulfide oxidizing bacteria act as phosphorus capacitors in systems with oscillating redox conditions, releasing massive amounts of TPO4 in a short space of time and dramatically increasing the internal loading of TPO4 in overlying waters.


2020 ◽  
Author(s):  
Subhadeep Rakshit ◽  
Andrew Cogswell ◽  
Sebastian Haas ◽  
Emmanuel Devred ◽  
Richard Davis ◽  
...  

&lt;p&gt;Lack of bottom water exchange in fjord-like estuaries can result in low oxygen conditions and creating sites of redox-sensitive biogeochemical processes, such as denitrification. In many of these systems, occasional intrusions of well-oxygenated bottom water may temporarily alter redox gradients and sediment-water biogeochemistry. Quantifying the magnitude and importance of these changes is a challenge due to the short timescales over which these events can occur. Here we present results from Bedford Basin, a 71 m deep coastal fjord in eastern Canada, where a 20-year, weekly timeseries of bottom water conditions indicates that autumn wind-driven intrusion events are a common, but infrequent, feature of its circulation. To examine the impact of these intrusions on biogeochemistry, we deployed a benthic instrument pod at 60 m depth to record high-resolution measurements of temperature, salinity, nitrate, oxygen, and fluorescence over a 4-month period during the fall of 2018.&amp;#160; During this time we captured two intrusion events, one in mid-Oct and another in mid-Nov. Both intrusion events occurred on a timescale of hours and resulted in sharp changes in temperature, salinity, oxygen, and nitrate.&amp;#160; We used these measurements to constrain a coupled sediment-water column reactive transport model to examine the immediate and annual impacts of these intrusion events on oxygen and nitrogen dynamics in the basin bottom waters and across the sediment-water interface.&lt;/p&gt;


2017 ◽  
Vol 14 (20) ◽  
pp. 4795-4813 ◽  
Author(s):  
Alexander Galán ◽  
Bo Thamdrup ◽  
Gonzalo S. Saldías ◽  
Laura Farías

Abstract. The upwelling system off central Chile (36.5° S) is seasonally subjected to oxygen (O2)-deficient waters, with a strong vertical gradient in O2 (from oxic to anoxic conditions) that spans a few metres (30–50 m interval) over the shelf. This condition inhibits and/or stimulates processes involved in nitrogen (N) removal (e.g. anammox, denitrification, and nitrification). During austral spring (September 2013) and summer (January 2014), the main pathways involved in N loss and its speciation, in the form of N2 and/or N2O, were studied using 15N-tracer incubations, inhibitor assays, and the natural abundance of nitrate isotopes along with hydrographic information. Incubations were developed using water retrieved from the oxycline (25 m depth) and bottom waters (85 m depth) over the continental shelf off Concepción, Chile. Results of 15N-labelled incubations revealed higher N removal activity during the austral summer, with denitrification as the dominant N2-producing pathway, which occurred together with anammox at all times. Interestingly, in both spring and summer maximum potential N removal rates were observed in the oxycline, where a greater availability of oxygen was observed (maximum O2 fluctuation between 270 and 40 µmol L−1) relative to the hypoxic bottom waters ( <  20 µmol O2 L−1). Different pathways were responsible for N2O produced in the oxycline and bottom waters, with ammonium oxidation and dissimilatory nitrite reduction, respectively, as the main source processes. Ammonium produced by dissimilatory nitrite reduction to ammonium (DNiRA) could sustain both anammox and nitrification rates, including the ammonium utilized for N2O production. The temporal and vertical variability of δ15N-NO3− confirms that multiple N-cycling processes are modulating the isotopic nitrate composition over the shelf off central Chile during spring and summer. N removal processes in this coastal system appear to be related to the availability and distribution of oxygen and particles, which are a source of organic matter and the fuel for the production of other electron donors (i.e. ammonium) and acceptors (i.e. nitrate and nitrite) after its remineralization. These results highlight the links between several pathways involved in N loss. They also establish that different mechanisms supported by alternative N substrates are responsible for substantial accumulation of N2O, which are frequently observed as hotspots in the oxycline and bottom waters. Considering the extreme variation in oxygen observed in several coastal upwelling systems, these findings could help to understand the ecological and biogeochemical implications due to global warming where intensification and/or expansion of the oceanic OMZs is projected.


2013 ◽  
Vol 10 (9) ◽  
pp. 15257-15304 ◽  
Author(s):  
C. Caulle ◽  
K. A. Koho ◽  
M. Mojtahid ◽  
G. J. Reichart ◽  
F. J. Jorissen

Abstract. Live (Rose Bengal stained) benthic foraminifera from the Murray Ridge, within and below the northern Arabian Sea Oxygen Minimum Zone (OMZ), were studied in order to determine the relationship between faunal composition, bottom-water oxygenation (BWO), pore-water chemistry and organic matter (organic carbon and phytopigment) distribution. A series of multicores were recovered from a ten-station oxygen (BWO: 2–78 μM) and bathymetric (885–3010 m depth) transect during the winter monsoon in January 2009. Foraminifera were investigated from three different size fractions (63–125 μm, 125–150 μm and > 150 μm). The larger foraminifera (> 125 μm) were strongly dominated by agglutinated species (e.g. Reophax spp.). In contrast, in the 63–125 μm fraction, calcareous taxa were more abundant, especially in the core of the OMZ, suggesting an opportunistic behaviour. On the basis of a Principal Component Analysis, three foraminiferal groups were identified, reflecting the environmental parameters along the study transect. The faunas from the shallowest stations, in the core of the OMZ (BWO: 2 μM), were composed of "low oxygen" species, typical of the Arabian Sea OMZ (e.g., Rotaliatinopsis semiinvoluta, Praeglobobulimina spp. , Bulimina exilis, Uvigerina peregrina typeparva). These taxa are adapted to the very low BWO conditions and to high phytodetritus supplies. The transitional group, typical for the lower part of the OMZ (BWO: 5–16 μM), is composed of more cosmopolitan taxa tolerant to low-oxygen concentrations (Globocassidulina subglobosa, Ehrenbergina trigona). Below the OMZ (BWO: 26–78 μM), where food availability is more limited and becomes increasingly restricted to surficial sediments, more cosmopolitan calcareous taxa were present, such as Bulimina aculeata, Melonis barleeanus, Uvigerina peregrina and Epistominella exigua. Miliolids were uniquely observed in this last group, reflecting the higher BWO. At these deeper sites, the faunas exhibit a clear depth succession of superficial, intermediate and deep-infaunal microhabitats, because of the deeper oxygen and nitrate penetration into the sediment.


2020 ◽  
Vol 17 (20) ◽  
pp. 5097-5127 ◽  
Author(s):  
Onur Kerimoglu ◽  
Yoana G. Voynova ◽  
Fatemeh Chegini ◽  
Holger Brix ◽  
Ulrich Callies ◽  
...  

Abstract. The German Bight was exposed to record high riverine discharges in June 2013, as a result of flooding of the Elbe and Weser rivers. Several anomalous observations suggested that the hydrodynamical and biogeochemical states of the system were impacted by this event. In this study, we developed a biogeochemical model and coupled it with a previously introduced high-resolution hydrodynamical model of the southern North Sea in order to better characterize these impacts and gain insight into the underlying processes. Performance of the model was assessed using an extensive set of in situ measurements for the period 2011–2014. We first improved the realism of the hydrodynamic model with regard to the representation of cross-shore gradients, mainly through inclusion of flow-dependent horizontal mixing. Among other characteristic features of the system, the coupled model system can reproduce the low salinities, high nutrient concentrations and low oxygen concentrations in the bottom layers observed within the German Bight following the flood event. Through a scenario analysis, we examined the sensitivity of the patterns observed during July 2013 to the hydrological and meteorological forcing in isolation. Within the region of freshwater influence (ROFI) of the Elbe–Weser rivers, the flood event clearly dominated the changes in salinity and nutrient concentrations, as expected. However, our findings point to the relevance of the peculiarities in the meteorological conditions in 2013 as well: a combination of low wind speeds, warm air temperatures and cold bottom-water temperatures resulted in a strong thermal stratification in the outer regions and limited vertical nutrient transport to the surface layers. Within the central region, the thermal and haline dynamics interactively resulted in an intense density stratification. This intense stratification, in turn, led to enhanced primary production within the central region enriched by nutrients due to the flood but led to reduction within the nutrient-limited outer region, and it caused a widespread oxygen depletion in bottom waters. Our results further point to the enhancement of the current velocities at the surface as a result of haline stratification and to intensification of the thermohaline estuarine-like circulation in the Wadden Sea, both driven by the flood event.


2005 ◽  
Vol 24 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Hiroyuki Takata ◽  
Koji Seto ◽  
Saburo Sakai ◽  
Satoshi Tanaka ◽  
Katsumi Takayasu

Abstract. The distribution of Virgulinella fragilis and the hydro-environment of Aso-kai Lagoon, central Japan, were studied to clarify the foraminifer’s adaptation to low-oxygen conditions. The hypolimnion of the lagoon is oxygen-poor during much of the year. Two faunas (A and B) are recognized, based on cluster analysis. Cluster A fauna consists of species common in brackish lagoons, such as the genera Trochammina and Ammonia, and occurs in seasonally oxygenated waters. Virgulinella fragilis, the predominant species of Cluster B fauna, dominates the central part of the lagoon. This species can tolerate more severe oxygen deficiencies than the typical brackish foraminifers (e.g. Trochammina spp.) and can adapt to long periods of oxygen-poor conditions in coastal lagoon environments, as well as in pelagic to hemi-pelagic settings. In order to survive in the near-anoxia of Aso-kai Lagoon, V. fragilis may have adapted to environments in which little reactive iron is available in the sediment, leaving pore-water and bottom-water sulphide available for symbionts, or may utilize sulphur denitrification processes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
S. Aoki ◽  
K. Yamazaki ◽  
D. Hirano ◽  
K. Katsumata ◽  
K. Shimada ◽  
...  

Abstract The Antarctic continental margin supplies the densest bottom water to the global abyss. From the late twentieth century, an acceleration in the long-term freshening of Antarctic Bottom Waters (AABW) has been detected in the Australian-Antarctic Basin. Our latest hydrographic observations reveal that, in the late 2010s, the freshening trend has reversed broadly over the continental slope. Near-bottom salinities in 2018–2019 were higher than during 2011–2015. Along 170° E, the salinity increase between 2011 and 2018 was greater than that observed in the west. The layer thickness of the densest AABW increased during the 2010s, suggesting that the Ross Sea Bottom Water intensification was a major source of the salinity increase. Freshwater content on the continental slope decreased at a rate of 58 ± 37 Gt/a in the near-bottom layer. The decadal change is very likely due to changes in Ross Sea shelf water attributable to a decrease in meltwater from West Antarctic ice shelves for the corresponding period.


2015 ◽  
Vol 12 (18) ◽  
pp. 5415-5428 ◽  
Author(s):  
C. L. McKay ◽  
J. Groeneveld ◽  
H. L. Filipsson ◽  
D. Gallego-Torres ◽  
M. J. Whitehouse ◽  
...  

Abstract. Trace element incorporation into foraminiferal shells (tests) is governed by physical and chemical conditions of the surrounding marine environment, and therefore foraminiferal geochemistry provides a means of palaeo-oceanographic reconstructions. With the availability of high-spatial-resolution instrumentation with high precision, foraminiferal geochemistry has become a major research topic over recent years. However, reconstructions of past bottom-water oxygenation using foraminiferal tests remain in their infancy. In this study we explore the potential of using Mn / Ca determined by secondary ion mass spectrometry (SIMS) as well as by flow-through inductively coupled plasma optical emission spectroscopy (FT-ICP-OES) in the benthic foraminiferal species Eubuliminella exilis as a proxy for recording changes in bottom-water oxygen conditions in the low-latitude NE Atlantic upwelling system. Furthermore, we compare the SIMS and FT-ICP-OES results with published Mn sediment bulk measurements from the same sediment core. This is the first time that benthic foraminiferal Mn / Ca is directly compared with Mn bulk measurements, which largely agree on the former oxygen conditions. Samples were selected to include different productivity regimes related to Marine Isotope Stage 3 (35–28 ka), the Last Glacial Maximum (28–19 ka), Heinrich Event 1 (18–15.5 ka), Bølling Allerød (15.5–13.5 ka) and the Younger Dryas (13.5–11.5 ka). Foraminiferal Mn / Ca determined by SIMS and FT-ICP-OES is comparable. Mn / Ca was higher during periods with high primary productivity, such as during the Younger Dryas, which indicates low-oxygen conditions. This is further supported by the benthic foraminiferal faunal composition. Our results highlight the proxy potential of Mn / Ca in benthic foraminifera from upwelling systems for reconstructing past variations in oxygen conditions of the sea floor environment as well as the need to use it in combination with other proxy records such as faunal assemblage data.


Sign in / Sign up

Export Citation Format

Share Document