scholarly journals Influence of solar variability on the occurrence of central European weather types from 1763 to 2009

2017 ◽  
Vol 13 (9) ◽  
pp. 1199-1212 ◽  
Author(s):  
Mikhaël Schwander ◽  
Marco Rohrer ◽  
Stefan Brönnimann ◽  
Abdul Malik

Abstract. The impact of solar variability on weather and climate in central Europe is still not well understood. In this paper we use a new time series of daily weather types to analyse the influence of the 11-year solar cycle on the tropospheric weather of central Europe. We employ a novel, daily weather type classification over the period 1763–2009 and investigate the occurrence frequency of weather types under low, moderate, and high solar activity level. Results show a tendency towards fewer days with westerly and west-southwesterly flow over central Europe under low solar activity. In parallel, the occurrence of northerly and easterly types increases. For the 1958–2009 period, a more detailed view can be gained from reanalysis data. Mean sea level pressure composites under low solar activity also show a reduced zonal flow, with an increase of the mean blocking frequency between Iceland and Scandinavia. Weather types and reanalysis data show that the 11-year solar cycle influences the late winter atmospheric circulation over central Europe with colder (warmer) conditions under low (high) solar activity.

2017 ◽  
Author(s):  
Mikhaël Schwander ◽  
Marco Rohrer ◽  
Stefan Brönnimann ◽  
Abdul Malik

Abstract. The impact of solar variability on weather and climate in Central Europe is still not well understood. In this paper we use a new time series of daily weather types to analyse the influence of the 11-year solar cycle on the tropospheric weather of Central Europe. We employ a novel, daily weather type classification over the period 1763–2009 and investigate the occurrence frequency of weather types under low, moderate and high solar activity level. Results show a tendency towards fewer days with westerly and west south-westerly flow over Central Europe under low solar activity. In parallel, the occurrence of northerly and easterly types increases. Changes are consistent across different sub-periods. For the 1958–2009 period, a more detailed view can be gained from reanalysis data. Mean sea level pressure composites under low solar activity also show a reduced zonal flow, with an increase of the mean blocking frequency between Iceland and Scandinavia. Weather types and reanalysis data show that the 11-year solar cycle influences the late winter atmospheric circulation over Central Europe with colder (warmer) conditions under low (high) solar activity. Model simulations used for a comparison do not reproduce the imprint of the 11-year solar cycle found in the reanalyses data.


2017 ◽  
Author(s):  
Amanda C. Maycock ◽  
Katja Matthes ◽  
Susann Tegtmeier ◽  
Hauke Schmidt ◽  
Rémi Thiéblemont ◽  
...  

Abstract. The impact of changes in incoming solar irradiance on stratospheric ozone abundances should be included in climate model simulations to fully capture the atmospheric response to solar variability. This study presents the first systematic comparison of the solar-ozone response (SOR) during the 11 year solar cycle amongst different chemistry-climate models (CCMs) and ozone databases specified in climate models that do not include chemistry. We analyse the SOR in eight CCMs from the WCRP/SPARC Chemistry-Climate Model Initiative (CCMI-1) and compare these with three ozone databases: the Bodeker Scientific database, the SPARC/AC&C database for CMIP5, and the SPARC/CCMI database for CMIP6. The results reveal substantial differences in the representation of the SOR between the CMIP5 and CMIP6 ozone databases. The peak amplitude of theSOR in the upper stratosphere (1–5 hPa) decreases from 5 % to 2 % between the CMIP5 and CMIP6 databases. This difference is because the CMIP5 database was constructed from a regression model fit to satellite observations, whereas the CMIP6 database is constructed from CCM simulations, which use a spectral solar irradiance (SSI) dataset with relatively weak UV forcing. The SOR in the CMIP6 ozone database is therefore implicitly more similar to the SOR in the CCMI-1 models than to the CMIP5 ozone database, which shows a greater resemblance in amplitude and structure to the SOR in the Bodeker database. The latitudinal structure of the annual mean SOR in the CMIP6 ozone database and CCMI-1 models is considerably smoother than in the CMIP5 database, which shows strong gradients in the SOR across the midlatitudes owing to the paucity of observations at high latitudes. The SORs in the CMIP6 ozone database and in the CCMI-1 models show a strong seasonal dependence, including large meridional gradients at mid to high latitudes during winter; such seasonal variations in the SOR are not included in the CMIP5 ozone database. Sensitivity experiments with a global atmospheric model without chemistry (ECHAM6.3) are performed to assess the impact of changes in the representation of the SOR and SSI forcing between CMIP5 and CMIP6. The experiments show that the smaller amplitude of the SOR in the CMIP6 ozone database compared to CMIP5 causes a decrease in the modelled tropical stratospheric temperature response over the solar cycle of up to 0.6 K, or around 50 % of the total amplitude. The changes in the SOR explain most of the difference in the amplitude of the tropical stratospheric temperature response in the case with combined changes in SOR and SSI between CMIP5 and CMIP6. The results emphasise the importance of adequately representing the SOR in climate models to capture the impact of solar variability on the atmosphere. Since a number of limitations in the representation of the SOR in the CMIP5 ozone database have been identified, CMIP6 models without chemistry are encouraged to use the CMIP6 ozone database to capture the climate impacts of solar variability.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012034
Author(s):  
V M Efimov ◽  
K V Efimov ◽  
D A Polunin ◽  
V Y Kovaleva

Abstract When analyzing a 1D time series, it is traditional to represent it as the sum of the trend, cyclical components and noise. The trend is seen as an external influence. However, the impact can be not only additive, but also multiplicative. In this case, not only the level changes, but also the amplitude of the cyclic components. In the PCA-Seq method, a generalization of SSA, it is possible to pre-standardize fragments of a time series to solve this problem. The algorithm is applied to the Anderson series – a sign alternating version of the well-known Wolf series, reflecting the 22-year Hale cycle. The existence of this cycle is not disputed at high solar activity, but there are doubts about the constancy of its period at this time, as well as its existence during the epoch of low solar activity. The processing of the series by the PCA-Seq method revealed clear oscillations fluctuations of almost constant amplitude with an average period of 21.9 years, and it was found that the correlation of these oscillations with the time axis for 300 years does not differ significantly from zero. This confirms the hypothesis of the existence of 22-year oscillations in solar activity even at its minima, like the Maunder minimum.


2021 ◽  
Vol 16 (3) ◽  
pp. 49-54
Author(s):  
A.O. Olawepo ◽  
J.O. Adeniyi ◽  
A. Afolabi

We have used ionosonde data from Ouagadougou (Geo. Lat.12.40 N, Long. 358.50, Magnetic declination -5.1320) to study the morphology of M(3000)F2 and to investigate the performance of IRI-12 during 1991 and 1995, years of high and low solar activities respectively. Results show that M(3000)F2 exhibits diurnal and solar cycle characteristics with no distinctive monthly/seasonal features. The two peaks which characterize the diurnal M(3000)F2 during high solar activity (HSA) are reduced to just one (the sunrise peak) during low solar activity (LSA). The study also shows that IRI-12 gives good representations of the observed values of M(3000)F2 with high correlation coefficient, R ranging between 0.9 and 0.95 during LSA and 0.94 and 0.99 during HSA. The model gives its best performance in the months of April irrespective of the solar activity. It either under-estimates or over-estimates the observed values of M(3000)F2 during other months.


2021 ◽  
Author(s):  
Annika Seppälä ◽  
Emily Gordon ◽  
Bernd Funke ◽  
Johanna Tamminen ◽  
Kaley Walker

<p>We present the impact of the so-called energetic particle precipitation (EPP), part of natural solar forcing on the atmosphere, on polar stratospheric NO<sub>x</sub>, ozone, and chlorine chemistry in the Antarctic springtime, using multi-satellite observations covering the overall period of 2005–2017. We find consistent ozone increases when high solar activity occurs during years with easterly phase of the quasi biennial oscillation. These ozone enhancements are also present in total O<sub>3</sub> column observations. We find consistent decreases in springtime active chlorine following winters of elevated solar activity. Further analysis shows that this is accompanied by increase of chemically inactive chlorine reservoir species, explaining the observed ozone increase. This provides the first observational evidence supporting the previously proposed mechanism relating to EPP modulating chlorine driven ozone loss. Our findings suggest that solar activity via EPP has played an important role in modulating Antarctic ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective and catalytic ozone destruction by EPP produced NO<sub>x</sub> will likely become a major contributor to Antarctic ozone loss.</p>


2021 ◽  
Vol 19 (8) ◽  
pp. 157-168
Author(s):  
Wafaa H.A. Zaki

The ionosphere layer (F2) is known as the most important layer for High frequency (Hf) radio communication because it is a permanent layer and excited during the day and night so it is able to reflect the frequencies at night and day due to its high critical frequency, and this layer is affected by daily and monthly solar activity. In this study the characteristics and behavior of F2 layer during Solar cycle 24 were studied, the effect of Sunspots number (Ri) on the critical frequency (foF2), were investigated for the years (2015, 2016, 2017, 2018, 2019, 2020) which represents the down phase of the solar cycle 24 over Erbil station (36° N, 44° E) by finding the critical frequency (foF2) values, the layer’ s impression times are determined for the days of solstice as well as equinox, where the solar activity was examined for the days of the winter and summer solstice and the days of the spring and autumn equinoxes for a period of 24 hours by applied the International Reference Ionosphere model IRI (2016). The output data for foF2 were verified by using the IRI-Ne- Quick option by specifying the time, date and Sunspot number parameters. Statistical analysis was caried out through the application of the Minitab (version 2018) in order to find the correlation between the critical frequency (foF2) of Ionospheric layer F2 and Sunspot number. It was concluded that the correlation is strong and positive, this indicate that critical frequency (foF2) increase with increasing Sunspots number (Ri) for solar cycle 24.


2020 ◽  
Vol 633 ◽  
pp. A83
Author(s):  
J. Becker Tjus ◽  
P. Desiati ◽  
N. Döpper ◽  
H. Fichtner ◽  
J. Kleimann ◽  
...  

The cosmic-ray Sun shadow, which is caused by high-energy charged cosmic rays being blocked and deflected by the Sun and its magnetic field, has been observed by various experiments, such as Argo-YBJ, Tibet, HAWC, and IceCube. Most notably, the shadow’s size and depth was recently shown to correlate with the 11-year solar cycle. The interpretation of such measurements, which help to bridge the gap between solar physics and high-energy particle astrophysics, requires a solid theoretical understanding of cosmic-ray propagation in the coronal magnetic field. It is the aim of this paper to establish theoretical predictions for the cosmic-ray Sun shadow in order to identify observables that can be used to study this link in more detail. To determine the cosmic-ray Sun shadow, we numerically compute trajectories of charged cosmic rays in the energy range of 5−316 TeV for five different mass numbers. We present and analyze the resulting shadow images for protons and iron, as well as for typically measured cosmic-ray compositions. We confirm the observationally established correlation between the magnitude of the shadowing effect and both the mean sunspot number and the polarity of the magnetic field during the solar cycle. We also show that during low solar activity, the Sun’s shadow behaves similarly to that of a dipole, for which we find a non-monotonous dependence on energy. In particular, the shadow can become significantly more pronounced than the geometrical disk expected for a totally unmagnetized Sun. For times of high solar activity, we instead predict the shadow to depend monotonously on energy and to be generally weaker than the geometrical shadow for all tested energies. These effects should become visible in energy-resolved measurements of the Sun shadow, and may in the future become an independent measure for the level of disorder in the solar magnetic field.


2007 ◽  
Vol 25 (6) ◽  
pp. 1337-1343 ◽  
Author(s):  
L. Liu ◽  
W. Wan ◽  
X. Yue ◽  
B. Zhao ◽  
B. Ning ◽  
...  

Abstract. In this paper, the ten-year (1996–2005) total ion density Ni measurements from the Defense Meteorological Satellite Program (DMSP) spacecraft in the morning and evening (09:30 and 21:30 LT) sectors have been analyzed to explore the dependence of plasma densities in the topside ionosphere at middle and low latitudes on the solar activity level. Results indicate that there is a strong solar activity dependence of DMSP Ni at 848 km altitude, which has latitudinal and seasonal features. The plasma density in the topside ionosphere has an approximately linear dependence on daily F107 and a strongly nonlinear dependence on SEM/SOHO EUV, such that the change rate of Ni becomes greater with increasing solar EUV. This is quite different from the dependence of Ni near the F-Region peak (NmF2), at which the rate of change of NmF2 decreases with increasing solar EUV. The rate of change of Ni at the DMSP altitude is greatest in the latitude range where Ni is greatest during high solar activity. We suggest that this greater rate of change (or amplification effect) of Ni at the DMSP altitude is mainly a consequence of the solar activity variations of the topside scale height. The changes in the height of the F-Region peak (hmF2) and the density NmF2 play a secondary role.


2010 ◽  
Vol 28 (6) ◽  
pp. 1263-1271 ◽  
Author(s):  
G. J. Wang ◽  
J. K. Shi ◽  
X. Wang ◽  
S. P. Shang ◽  
G. Zherebtsov ◽  
...  

Abstract. The temporal variations of the low latitude nighttime spread F (SF) observed by DPS-4 digisonde at low latitude Hainan station (geog. 19.5° N, 109.1° E, dip lat. 9.5° N) during the declining solar cycle 23 from March 2002 to February 2008 are studied. The spread F measured by the digisonde were classified into four types, i.e., frequency SF (FSF), range SF (RSF), mixed SF (MSF), and strong range SF (SSF). The statistical results show that MSF and SSF are the outstanding irregularities in Hainan, MSF mainly occurs during summer and low solar activity years, whereas SSF mainly occurs during equinoxes and high solar activity years. The SSF has a diurnal peak before midnight and usually appears during 20:00–02:00 LT, whereas MSF peaks nearly or after midnight and occurs during 22:00–06:00 LT. The time of maximum occurrence of SSF is later in summer than in equinoxes and this time delay can be caused by the later reversal time of the E×B drift in summer. The SunSpot Number (SSN) dependence of each type SF is different during different season. The FSF is independent of SSN during each season; RSF with SSN is positive relation during equinoxes and summer and is no relationship during the winter; MSF is significant dependence on SSN during the summer and winter, and does not relate to SSN during the equinoxes; SSF is clearly increasing with SSN during equinoxes and summer, while it is independent of SSN during the winter. The occurrence numbers of each type SF and total SF have the same trend, i.e., increasing as Kp increases from 0 to 1, and then decreasing as increasing Kp. The correlation with Kp is negative for RSF, MSF, SSF and total SF, but is vague for the FSF.


2019 ◽  
Vol 47 (1) ◽  
pp. 85-87
Author(s):  
E.V. Maiewski ◽  
R.A. Kislov ◽  
H.V. Malova ◽  
O.V. Khabarova ◽  
V.Yu. Popov ◽  
...  

A stationary axisymmetric MHD model of the solar wind has been constructed, which allows us to study the spatial distribution of the magnetic field and plasma characteristics at radial distances from 20 to 400 radii of the Sun at almost all heliolatitudes. The model takes into account the changes in the magnetic field of the Sun during a quarter of the solar cycle, when the dominant dipole magnetic field is replaced by a quadrupole. Selfconsistent solutions for the magnetic and velocity fields, plasma concentration and current density of the solar wind depending on the phase of the solar cycle are obtained. It is shown that during the domination of the dipole magnetic component in the solar wind heliospheric current sheet (HCS) is located in the equatorial plane, which is a part of the system of radial and transverse currents, symmetrical in the northern and southern hemispheres. As the relative contribution of the quadrupole component to the total magnetic field increases, the shape of the HCS becomes conical; the angle of the cone gradually decreases, so that the current sheet moves entirely to one of the hemispheres. At the same time, at high latitudes of the opposite hemisphere, a second conical HCS arises, the angle of which increases. When the quadrupole field becomes dominant (at maximum solar activity), both HCS lie on conical surfaces inclined at an angle of 35 degrees to the equator. The model describes the transition from the fast solar wind at high latitudes to the slow solar wind at low latitudes: a relatively gentle transition in the period of low solar activity gives way to more drastic when high solar activity. The model also predicts an increase in the steepness of the profiles of the main characteristics of the solar wind with an increase in the radial distance from the Sun. Comparison of the obtained dependences with the available observational data is discussed.


Sign in / Sign up

Export Citation Format

Share Document