scholarly journals Patterns in data of extreme droughts/floods and harvest grades derived from historical documents in eastern China during 801–1910

2020 ◽  
Vol 16 (1) ◽  
pp. 101-116 ◽  
Author(s):  
Zhixin Hao ◽  
Maowei Wu ◽  
Jingyun Zheng ◽  
Jiewei Chen ◽  
Xuezhen Zhang ◽  
...  

Abstract. In China, historical documents record a large quantity of information related to climate change and grain harvest. This information can help to explore the impacts of extreme drought or flood on crop production, which can provide implications for the adaptation of agriculture to higher-probability extreme climate in the context of global warming. In this paper, reported extreme drought/flood chronologies and reconstructed grain harvest series derived from historical documents were adopted in order to investigate the association between the reported frequency of extreme drought/flood in eastern China and reconstructed poor harvests during 801–1910. The results show that extreme droughts were reported more often in 801–870, 1031–1230, 1481–1530, and 1581–1650 over the whole of eastern China. On a regional scale, extreme droughts were reported more often in 1031–1100, 1441–1490, 1601–1650, and 1831–1880 in the North China Plain, 801–870, 1031–1120, 1161–1220, and 1471–1530 in Jianghuai, and 991–1040, 1091–1150, 1171–1230, 1411–1470, and 1481–1530 in Jiangnan. The grain harvest was reconstructed to be generally poor in 801–940, 1251–1650, and 1841–1910, but the reconstructed harvests were bumper in 951–1250 and 1651–1840, approximately. During the entire period from 801 to 1910, the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated over the long term with lower reconstructed harvests. The association between reported frequency of extreme floods and reconstructed low harvests appeared to be much weaker, while reconstructed harvest was much worse when extreme drought and extreme flood in different subregions were reported in the same year. The association between reconstructed poor harvests and reported frequency of regional extreme droughts was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which could imply that a warm climate could weaken the impact of extreme drought on poor harvests; yet other historical factors may also contribute to these different patterns extracted from the two datasets.

2020 ◽  
Author(s):  
Zhixin Hao

<p>In China, historical documents record a large quantity of information related to climate change and grain harvest. This information can help to explore the impacts of extreme drought or flood on crop production, which can provide implications for the adaptation of agriculture to higher-probability extreme climate in the context of global warming. In this paper, reported extreme drought/flood chronologies and reconstructed grain harvest series derived from historical documents were adopted in order to investigate the association between the reported frequency of extreme drought/flood in eastern China and reconstructed poor harvests during 801–1910. The results show that extreme droughts were reported more often in 801–870, 1031–1230, 1481–1530, and 1581–1650 over the whole of eastern China. On a regional scale, extreme droughts were reported more often in 1031–1100, 1441–1490, 1601–1650, and 1831–1880 in the North China Plain, 801–870, 1031–1120, 1161–1220, and 1471–1530 in Jianghuai, and 991–1040, 1091–1150, 1171–1230, 1411–1470, and 1481–1530 in Jiangnan. The grain harvest was reconstructed to be generally poor in 801–940, 1251–1650, and 1841–1910, but the reconstructed harvests were bumper in 951–1250 and 1651–1840, approximately. During the entire period from 801 to 1910, the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated over the long term with lower reconstructed harvests. The association between reported frequency of extreme floods and reconstructed low harvests appeared to be much weaker, while reconstructed harvest was much worse when extreme drought and extreme flood in different subregions were reported in the same year. The association between reconstructed poor harvests and reported frequency of regional extreme droughts was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which could imply that a warm climate could weaken the impact of extreme drought on poor harvests; yet other historical factors may also contribute to these different patterns extracted from the two datasets.</p>


2019 ◽  
Author(s):  
Zhixin Hao ◽  
Maowei Wu ◽  
Jingyun Zheng ◽  
Jiewei Chen ◽  
Xuezhen Zhang ◽  
...  

Abstract. Chinese historical documents recorded plenty of information related with climate change and grain harvest, which are helpful to explore the impacts of extreme drought/flood on crops and the implications on adaptation for agriculture to more extreme climate probability in the context of global warming. Here, we used the reconstructed extreme drought/flood chronologies and reconstructed grain harvest series derived from historical documents to investigate the connection between the occurrences of extreme drought/flood in eastern China and poor harvest during 801–1910. The results showed that more extreme droughts occurred in 801–870, 1031–1230, 1481–1530 and 1581–1650 over whole eastern China. On regional scale, more extreme droughts occurred in 1031–1100, 1441–1490, 1601–1650 and 1831–1880 in North China, 801–870, 1031–1120, 1161–1220 and 1471–1530 in Jianghuai, 991–1040, 1091–1150, 1171–1230, 1411–1470 and 1481–1530 in Jiangnan. The grain harvest was poor in periods of 801–940, 1251–1650 and 1841 to 1910, but bumper in periods of 951–1250 and 1651–1840 approximately. For entire period of 801–1910, more occurrence of extreme drought in any sub–region of eastern China could significantly reduce harvest in the long term average, but the connection between harvest and extreme flood seemed to be much weaker. The co–occurrence of extreme drought and extreme flood in different sub–regions in the same year had a greater impact on harvest yield. However, the connection between the occurrence of poor harvest and regional extreme drought was weak in the warm epoch of 920–1300 but strong in the cold epoch of 1310–1880, which implicated warm climate might weaken the impact of extreme drought on poor harvest during historical times.


2019 ◽  
Vol 19 (18) ◽  
pp. 11791-11801 ◽  
Author(s):  
Aijun Ding ◽  
Xin Huang ◽  
Wei Nie ◽  
Xuguang Chi ◽  
Zheng Xu ◽  
...  

Abstract. Haze pollution caused by PM2.5 is the largest air quality concern in China in recent years. Long-term measurements of PM2.5 and the precursors and chemical speciation are crucially important for evaluating the efficiency of emission control, understanding formation and transport of PM2.5 associated with the change of meteorology, and accessing the impact of human activities on regional climate change. Here we reported long-term continuous measurements of PM2.5, chemical components, and their precursors at a regional background station, the Station for Observing Regional Processes of the Earth System (SORPES), in Nanjing, eastern China, since 2011. We found that PM2.5 at the station has experienced a substantial decrease (−9.1 % yr−1), accompanied by even a very significant reduction of SO2 (−16.7 % yr−1), since the national “Ten Measures of Air” took action in 2013. Control of open biomass burning and fossil-fuel combustion are the two dominant factors that influence the PM2.5 reduction in early summer and winter, respectively. In the cold season (November–January), the nitrate fraction was significantly increased, especially when air masses were transported from the north. More NH3 available from a substantial reduction of SO2 and increased oxidization capacity are the main factors for the enhanced nitrate formation. The changes of year-to-year meteorology have contributed to 24 % of the PM2.5 decrease since 2013. This study highlights several important implications on air pollution control policy in China.


2019 ◽  
Author(s):  
Aijun Ding ◽  
Xin Huang ◽  
Wei Nie ◽  
Xuguang Chi ◽  
Zheng Xu ◽  
...  

Abstract. Haze pollution caused by PM2.5 is the largest air quality concern in China in recent years. Long-term measurements of PM2.5 and the precursors and chemical speciation is crucially important for evaluating the efficiency of emission control, understanding formation and transport of PM2.5 associated with the change of meteorology and for accessing the impact of human activities to regional climate change. Here we reported long-term continuous measurements of PM2.5, chemical components, and their precursors at a regional background station, the Station for Observing Regional Processes of the Earth System (SORPES), in Nanjing eastern China since 2011. We found that PM2.5 at the station has experienced a substantial decrease (−9.1 %/yr), accompanied with even much significant reduction of SO2 (−16.7 %/yr), since the national "Ten measures" for air took action in 2013. Control of open biomass burning and fossil-fuel combustion are the two dominant factors that influence the PM2.5 reduction in early summer and winter, respectively. In cold season (November–January), increased nitrate fraction was observed with more NH3 available from a substantial reduction of sulfate, and the change of year-to-year meteorology contributed to 24 % of the PM2.5 decrease since 2013. This study highlights several important implications on air pollution control policy in China.


Author(s):  
Robert H. Ellison

Prompted by the convulsions of the late eighteenth century and inspired by the expansion of evangelicalism across the North Atlantic world, Protestant Dissenters from the 1790s eagerly subscribed to a millennial vision of a world transformed through missionary activism and religious revival. Voluntary societies proliferated in the early nineteenth century to spread the gospel and transform society at home and overseas. In doing so, they engaged many thousands of converts who felt the call to share their experience of personal conversion with others. Though social respectability and business methods became a notable feature of Victorian Nonconformity, the religious populism of the earlier period did not disappear and religious revival remained a key component of Dissenting experience. The impact of this revitalization was mixed. On the one hand, growth was not sustained in the long term and, to some extent, involvement in interdenominational activity undermined denominational identity; on the other hand, Nonconformists gained a social and political prominence they had not enjoyed since the middle of the seventeenth century and their efforts laid the basis for the twentieth-century explosion of evangelicalism in Africa, Asia, and South America.


Author(s):  
Yao Li ◽  
Haoyang Li ◽  
Jianqing Ruan

The natural environment is one of the most critical factors that profoundly influences human races. Natural disasters may have enormous effects on individual psychological characteristics. Using China’s long-term historical natural disaster dataset from 1470 to 2000 and data from a household survey in 2012, we explore whether long-term natural disasters affect social trust. We find that there is a statistically significant positive relationship between long-term natural disaster frequency and social trust. We further examine the impact of long-term natural disaster frequency on social trust in specific groups of people. Social trust in neighbors and doctors is stronger where long-term natural disasters are more frequent. Our results are robust after we considering the geographical difference. The effect of long-term natural disasters remains positively significant after we divide the samples based on geographical location. Interestingly, the impact of long-term flood frequency is only significant in the South and the impact of long-term drought frequency is only significant in the North.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Cassandra R. Davis ◽  
Sarah R. Cannon ◽  
Sarah C. Fuller

PurposeThe purpose of this paper is to identify and describe the long-term impacts of hurricanes on schools and discuss approaches to improving recovery efforts.Design/methodology/approachInterviews with 20 school districts in Texas and North Carolina after Hurricanes Harvey (2017) and Matthew (2016). In total, 115 interviews were conducted with teachers, principals, district superintendents and representatives from state education agencies. Interview questions focused on the impact of storms and strategies for recovery.FindingsThe authors uncovered three long-term impacts of hurricanes on schools: (1) constrained instructional time, (2) increased social-emotional needs and (3) the need to support educators.Research limitations/implicationsThis paper focuses on two storms, in two states, in two successive years. Data collection occurred in Texas, one academic year after the storm. As compared to the North Carolina, data collection occurred almost two academic years after the storm.Practical implicationsThis paper illuminates strategies for stakeholders to implement and expedite hurricane recovery through; (1) updating curricula plans, (2) providing long-term counselors and (3) supporting educators in and out of school.Originality/valueTo date, very few studies have explored the ways in which schools face long-term impacts following a disaster. This paper provides insight to the challenges that prolong the impacts of disasters and impede recovery in schools. With hurricanes and related disasters continuing to affect schooling communities, more research is needed to identify the best ways to support schools, months to years after an event.


2018 ◽  
Vol 14 (8) ◽  
pp. 1253-1273 ◽  
Author(s):  
Kees Nooren ◽  
Wim Z. Hoek ◽  
Brian J. Dermody ◽  
Didier Galop ◽  
Sarah Metcalfe ◽  
...  

Abstract. The impact of climate change on the development and disintegration of Maya civilisation has long been debated. The lack of agreement among existing palaeoclimatic records from the region has prevented a detailed understanding of regional-scale climatic variability, its climatic forcing mechanisms and its impact on the ancient Maya. We present two new palaeo-precipitation records for the central Maya lowlands, spanning the Pre-Classic period (1800 BCE–250 CE), a key epoch in the development of Maya civilisation. A beach ridge elevation record from world's largest late Holocene beach ridge plain provides a regional picture, while Lake Tuspan's diatom record is indicative of precipitation changes at a local scale. We identify centennial-scale variability in palaeo-precipitation that significantly correlates with the North Atlantic δ14C atmospheric record, with a comparable periodicity of approximately 500 years, indicating an important role of North Atlantic atmospheric–oceanic forcing on precipitation in the central Maya lowlands. Our results show that the Early Pre-Classic period was characterised by relatively dry conditions, shifting to wetter conditions during the Middle Pre-Classic period, around the well-known 850 BCE (2.8 ka) event. We propose that this wet period may have been unfavourable for agricultural intensification in the central Maya lowlands, explaining the relatively delayed development of Maya civilisation in this area. A return to relatively drier conditions during the Late Pre-Classic period coincides with rapid agricultural intensification in the region and the establishment of major cities.


2017 ◽  
Vol 10 (2) ◽  
pp. 549-563 ◽  
Author(s):  
Annmarie Eldering ◽  
Chris W. O'Dell ◽  
Paul O. Wennberg ◽  
David Crisp ◽  
Michael R. Gunson ◽  
...  

Abstract. The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO2 dry air mole fraction, XCO2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of XCO2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes XCO2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north–south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north–south XCO2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in XCO2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart XCO2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.


2015 ◽  
Vol 3 (7) ◽  
pp. 4353-4389
Author(s):  
S. Quiroga ◽  
C. Suárez

Abstract. This paper examines the effects of climate change and drought on agricultural outputs in Spanish rural areas. By now the effects of drought as a response to climate change or policy restrictions have been analyzed through response functions considering direct effects on crop productivity and incomes. These changes also affect incomes distribution in the region and therefore modify the social structure. Here we consider this complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of inequalities measure to estimate the impact of climate change and drought on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptance of certain adaptation measures in a context of drought. We provide the empirical estimations for the marginal effects of the two considered impacts: farms' income average and social income distribution. In our estimates we consider crop productivity response to both bio-physical and socio-economic aspects to analyze long term implications on both competitiveness and social disparities. We find disparities in the adaptation priorities depending on the crop and the region analyzed.


Sign in / Sign up

Export Citation Format

Share Document