scholarly journals Climatic information archived in ice cores: impact of intermittency and diffusion on the recorded isotopic signal in Antarctica

2020 ◽  
Vol 16 (4) ◽  
pp. 1581-1598 ◽  
Author(s):  
Mathieu Casado ◽  
Thomas Münch ◽  
Thomas Laepple

Abstract. The isotopic signal (δ18O and δD) imprinted in ice cores from Antarctica is not solely generated by the temperature sensitivity of the isotopic composition of precipitation, but it also contains the signature of the intermittency of the precipitation patterns, as well as of post-deposition processes occurring at the surface and in the firn. This leads to a proxy signal recorded by the ice cores that may not be representative of the local climate variations. Due to precipitation intermittency, the ice cores only record brief snapshots of the climatic conditions, resulting in aliasing of the climatic signal and thus a large amount of noise which reduces the minimum temporal resolution at which a meaningful signal can be retrieved. The analyses are further complicated by isotopic diffusion, which acts as a low-pass filter that dampens any high-frequency changes. Here, we use reanalysis data (ERA-Interim) combined with satellite products of accumulation to evaluate the spatial distribution of the numerical estimates of the transfer function that describes the formation of the isotopic signal across Antarctica. As a result, the minimum timescales at which the signal-to-noise ratio exceeds unity range from less than 1 year at the coast to about 1000 years further inland. Based on solely physical processes, we are thus able to define a lower bound for the timescales at which climate variability can be reconstructed from the isotopic composition in ice cores.

2019 ◽  
Author(s):  
Mathieu Casado ◽  
Thomas Münch ◽  
Thomas Laepple

Abstract. The isotopic signal (δ18O and δD) imprinted in ice cores from Antarctica is not solely generated by the temperature sensitivity of the isotopic composition of precipitation but also contains the signature of the intermittency of precipitation patterns as well as of post-deposition processes occurring at the surface and in the firn. This leads to a proxy signal recorded by the ice cores that may not be representative of the local climatic variations. Due to precipitation intermittency, the ice cores only record brief snapshots of the climatic conditions, resulting in aliasing of the climatic signal, and thus a large amount of noise which reduces the minimum temporal resolution at which a meaningful signal can be retrieved. The analyses are further complicated by isotopic diffusion which acts as a low pass filter that dampens any high frequency changes. Here, we use reanalysis data (ERA-Interim) combined with satellite products of accumulation to evaluate the spatial distribution of the transfer function that describes the formation of the isotopic signal across Antarctica. The minimum time scales at which the signal-to-noise ratio exceeds unity range from less than a year at the coast to a thousand years further inland. Based on solely physical processes, we were thus able to define a lower bound for the time scales at which climate variability can be reconstructed from ice core water isotopic compositions.


2016 ◽  
Author(s):  
Mathieu Casado ◽  
Amaelle Landais ◽  
Ghislain Picard ◽  
Thomas Münch ◽  
Thomas Laepple ◽  
...  

Abstract. The oldest ice core records are obtained from the East Antarctic plateau. Water stable isotopes records are key for reconstructions of past climatic conditions both over the ice sheet and at the evaporation source. The accuracy of such climate reconstructions crucially depends on the knowledge of all the processes affecting the water vapour, precipitation and snow isotopic composition. Atmospheric fractionation processes are well understood and can be integrated in Rayleigh distillation and complex isotope enabled climate models. However, a comprehensive quantitative understanding of processes potentially altering the snow isotopic composition after the deposition is still missing, especially for exchanges between vapour and snow. In low accumulation sites such as found on the East Antarctic Plateau, these poorly constrained processes are especially likely to play a significant role. This limits the interpretation of isotopic composition from ice core records, specifically at short time scales. Here, we combine observations of isotopic composition in the vapour, the precipitation, the surface snow and the buried snow from various sites of the East Antarctic Plateau. At the seasonal scale, we highlight a significant impact of metamorphism on surface snow isotopic signal compared to the initial precipitation isotopic signal. In particular, in summer, exchanges of water molecules between vapour and snow are driven by the sublimation/condensation cycles at the diurnal scale. Using highly resolved isotopic composition profiles from pits in five East Antarctic sites, we identify a common 20 cm cycle which cannot be attributed to the seasonal variability of precipitation. Altogether, the smaller range of isotopic compositions observed in the buried and in the surface snow compared to the precipitation, and also the reduced slope between surface snow isotopic composition and temperature compared to precipitation, constitute evidences of post-deposition processes affecting the variability of the isotopic composition in the snow pack. To reproduce these processes in snow-models is crucial to understand the link between snow isotopic composition and climatic conditions and to improve the interpretation of isotopic composition as a paleoclimate proxy.


2018 ◽  
Vol 42 (1) ◽  
pp. 167-174 ◽  
Author(s):  
V. I. Parfenov ◽  
D. Y. Golovanov

An algorithm for estimating time positions and amplitudes of a periodic pulse sequence from a small number of samples was proposed. The number of these samples was determined only by the number of pulses. The performance of this algorithm was considered on the assumption that the spectrum of the original signal is limited with an ideal low-pass filter or the Nyquist filter, and conditions for the conversion from one filter to the other were determined. The efficiency of the proposed algorithm was investigated through analyzing in which way the dispersion of estimates of time positions and amplitudes depends on the signal-to-noise ratio and on the number of pulses in the sequence. It was shown that, from this point of view, the efficiency of the algorithm decreases with increasing number of sequence pulses. Besides, the efficiency of the proposed algorithm decreases with decreasing signal-to-noise ratio.It was found that, unlike the classical maximum likelihood algorithm, the proposed algorithm does not require a search for the maximum of a multivariable function, meanwhile characteristics of the estimates are practically the same for both these methods. Also, it was shown that the estimation accuracy of the proposed algorithm can be increased by an insignificant increase in the number of signal samples.The results obtained may be used in the practical design of laser communication systems, in which the multipulse pulse-position modulation is used for message transmission. 


2019 ◽  
Vol 19 (1) ◽  
pp. 20
Author(s):  
Irma Safitri ◽  
Gelar Budiman ◽  
Arfidianti Kartika Meiza Putri

Abuse is not only done to copy or distribute data but also to the digital copyright labels. There is a way to protect data by inserting or hiding a piece of certain information, namely a watermarking technique. In this paper, we propose audio watermarking with Quantization Index Modulation (QIM) method as an embedding process combined with Compressive Sampling (CS), Discrete Sine Transform (DST) and QR decomposition. Binary image is used as a watermark inserted in host audio. DST is used for transformation process from time domain to frequency domain, while QR is used to decompose onedimension matrix into two-dimension matrix. Meanwhile, CS is used to obtain the compressed watermark file which is done before the embedding process. QIM method is used to embed the watermark file to the audio host file. Simulation results indicated that the proposed audio watermarking technique has good robustness against some attacks such as Low Pass Filter (LPF), resampling and linear speed change. In addition, it provides good performance in terms of imperceptibility with Signal to Noise Ratio (SNR) > 20 dB and capacity C = 689 bps.


1982 ◽  
Vol 3 ◽  
pp. 17-22 ◽  
Author(s):  
J. P. Benoist ◽  
J. Jouzel ◽  
C. Lorius ◽  
L. Merlivat ◽  
M. Pourchet

Data on climatic changes over thousands of years is needed for a better understanding of the shorter term variations which are of interest to man. For this purpose we measured the isotope composition (δD‰) of two adjacent ice cores drilled in the Dome C area. The time scale was established using the remarkably constant mean annual accumulation rate (37 kg m−2) determined by various techniques. The detailed isotope records were smoothed to filter out the δ value fluctuations not directly related to local temperature changes. With respect to conditions over the last 2.5 ka, the combined smoothed δ curve indicates a cooler climate from about 1800 to 1200 AD and a slightly warmer period from about 1200 to 700 AD. These periods may well correspond to the suggested world-wide Little Ice Age and medieval warm phase. Using the present δD‰/T°C measured at the surface, the maximum amplitude for these two periods, after smoothing with a low pass filter of 512 a, is approximately -0.35 and +0.3°C, respectively.


Author(s):  
Gordon H. Robinson

Data is presented on the ability of a human controller to track a signal contaminated with noise. Signal frequencies and signal-to-noise ratio are the independent variables. An optimal, adaptive filter is presented for comparison. A descriptive model is derived based on known human characteristics in manual control. Future research needs are discussed.


2013 ◽  
Vol 389 ◽  
pp. 489-493
Author(s):  
Yong Lv ◽  
Chun Hui Niu ◽  
Yue Qiang Li ◽  
Qing Shan Chen ◽  
Xiao Ying Li ◽  
...  

In order to detect the weak signal deeply buried in the noise, a weak signal detection system based on lock-in amplifier is proposed. The system includes the preamplifier circuit, active low pass filter circuit, AC amplifying circuit and phase sensitive demodulation circuit. Test results show that it can greatly increase the signal-to-noise ratio (SNR) up to 12.7db.


2013 ◽  
Vol 712-715 ◽  
pp. 1798-1801 ◽  
Author(s):  
Xing Long Guo ◽  
Z.L. Wang ◽  
J. Huang ◽  
Z.J. Zhang ◽  
H.H. Yin ◽  
...  

In this paper, fully monolithic tunable millimeter-wave filters using defected ground structures (DGS) are proposed using the CPW-based periodic structures with novel multiple-contact MEMS switches. Millimeter-wave low-pass filters were designed, fabricated, and tested. The cascaded CPW-based periodic structures, with low-pass intrinsic filtering characteristics, are reconfigured into a self-similar single unit cell by the operation of the novel multiple-contact MEMS switches with single actuation. In the first order tuning, the 3-dB cut-off frequency changes from 8.2GHz to10.5GHz, and the second order tuning is 8.2GHz to 16.8GHz. The tested results show that the pass-band ripple is less than 1.2dB and the maximal out-of-band rejection is better than 27dB. The chip size of the low-pass filter is 2.5mm×1.2mm.


The electrical power produced via photo-voltaic (PV) array relies largely on weather conditions. In this paper, we presented a continuous state functionality of the PV gridconnected (GC) unit at distinct solar irradiances. The presented model is developed on MATLAB environment, which includes the PV array using an improved perturb and observe (MP&O) tracking system interconnected to DC to DC boosting conversion application, the 3-phase 3 level electric power inverter which usually associated to the utility grid using low pass filter, coupled transformer and synchronous control mechanism of PV inverter. The presented model is lab-created within day-by- day climatic conditions to estimate its working mechanism. The simulation results of the proposed system satisfy requirements grid performance with high power quality. In the proposed work number of cell modules used 90, number of parallel strings 60, maximum PV output voltage1000wb/m2 at 274 V, minimum voltage at 600 wb/m2 at 250V, maximum power at 1000 wb/m2-100 kw, and minimum power at 600 wb/m2-57 kw.


2017 ◽  
Author(s):  
Mathieu Casado ◽  
Amaelle Landais ◽  
Ghislain Picard ◽  
Thomas Münch ◽  
Thomas Laepple ◽  
...  

Abstract. The oldest ice core records are obtained from the East Antarctic plateau. Water isotopes records are key to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all the processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in Rayleigh distillation and isotope enabled climate models. However, a quantitative understanding of processes potentially altering the snow isotopic composition after the deposition is still missing. In low accumulation sites, such as those found in Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretation of isotopic composition. Here, we combine observations of isotopic composition in the vapour, the precipitation, the surface snow and the buried snow from Dome C, a deep ice core site on the East Antarctic Plateau. At the seasonal scale, we suggest a significant impact of metamorphism on surface snow isotopic signal compared to the initial precipitation signal. Particularly, in summer, exchanges of water molecules between vapour and snow are driven by the sublimation/condensation cycles at the diurnal scale. Using highly resolved isotopic composition profiles from pits in five Antarctic sites, we identify common patterns, despite different accumulation rates, which cannot be attributed to the seasonal variability of precipitation. Altogether, the difference in the signals observed in the precipitation, surface snow and buried snow isotopic composition constitute evidences of post-deposition processes affecting ice core records in low accumulation areas.


Sign in / Sign up

Export Citation Format

Share Document