scholarly journals Aridification signatures from fossil pollen indicate a drying climate in east-central Tibet during the late Eocene

2020 ◽  
Vol 16 (6) ◽  
pp. 2255-2273
Author(s):  
Qin Yuan ◽  
Natasha Barbolini ◽  
Catarina Rydin ◽  
Dong-Lin Gao ◽  
Hai-Cheng Wei ◽  
...  

Abstract. Central Asia experienced a number of significant elevational and climatic changes during the Cenozoic, but much remains to be understood regarding the timing and driving mechanisms of these changes as well as their influence on ancient ecosystems. Here, we describe the palaeoecology and palaeoclimate of a new section from the Nangqian Basin in Tibet, north-western China, dated as Bartonian (41.2–37.8 Ma; late Eocene) based on our palynological analyses. Located on the east-central part of what is today the Tibetan Plateau, this section is excellently placed for better understanding the palaeoecological history of Tibet following the Indo-Asian collision. Our new palynological record reveals that a strongly seasonal steppe–desert ecosystem characterized by drought-tolerant shrubs, diverse ferns, and an underlying component of broad-leaved forests existed in east-central Tibet during the Eocene, influenced by a southern monsoon. A transient warming event, possibly the middle Eocene climatic optimum (MECO; 40 Ma), is reflected in our record by a temporary increase in regional tropical taxa and a concurrent decrease in steppe–desert vegetation. In the late Eocene, a drying signature in the palynological record is linked to proto-Paratethys Sea retreat, which caused widespread long-term aridification across the region. To better distinguish between local climatic variation and farther-reaching drivers of Central Asian palaeoclimate and elevation, we correlated key palynological sections across the Tibetan Plateau by means of established radioisotopic ages and biostratigraphy. This new palynozonation illustrates both intra- and inter-basinal floral response to Qinghai–Tibetan uplift and global climate change during the Paleogene, and it provides a framework for the age assignment of future palynological studies in Central Asia. Our work highlights the ongoing challenge of integrating various deep time records for the purpose of reconstructing palaeoelevation, indicating that a multi-proxy approach is vital for unravelling the complex uplift history of Tibet and its resulting influence on Asian climate.

2020 ◽  
Author(s):  
Qin Yuan ◽  
Natasha Barbolini ◽  
Catarina Rydin ◽  
Dong-Lin Gao ◽  
Hai-Cheng Wei ◽  
...  

Abstract. Central Asia experienced a number of significant elevational and climatic changes during the Cenozoic, but much remains to be understood regarding the timing and driving mechanisms of these changes, as well as their influence on ancient ecosystems. Here we describe the palaeoecology and palaeoclimate of a new section from the Nangqian Basin in Tibet, northwestern China, here dated as late Lutetian–Bartonian (late middle–late Eocene) based on our palynological analyses. Located on the east-central part of the Tibetan Plateau, this section is excellently placed for better understanding the palaeoecological history of Tibet following the India-Asia collision. Our new pollen record reveals that a strongly seasonal steppe-desert ecosystem characterised by drought-tolerant shrubs, diverse ferns and an underlying component of broad-leaved forests existed in east-central Tibet during the Eocene, influenced by a southern monsoon. Warming during the Middle Eocene Climatic Optimum only prompted a temporary vegetation response, while a drying signature in our pollen record after 40 Ma demonstrates that proto-Paratethys sea retreat caused widespread long-term aridification across the plateau. To better distinguish between local climatic variation and farther-reaching drivers of Central Asian palaeoclimate and elevation, we correlated key palynological sections across the Tibetan Plateau by means of established radioisotopic ages and biostratigraphy. This new palynozonation illustrates both intra- and inter-basinal floral response to plateau uplift and global climate change during the Paleogene, and provides a framework for the age assignment of future palynological studies in Central Asia. Our work highlights the ongoing challenge of integrating various deep time records for the purpose of reconstructing palaeoelevation, indicating that a multiproxy approach is vital for unravelling the complex uplift history of the Tibetan Plateau and its resulting influence on Asian climate.


2020 ◽  
Author(s):  
Weiwei Xue ◽  
Yani Najman ◽  
Xiumian Hu ◽  
Cristina Persano ◽  
Finlay M. Stuart ◽  
...  

<p>Knowledge of the geological history of the Tibetan plateau is critical to understanding crustal deformation process, and the plateau’s influence on climate. However, the timing of Tibetan plateau development remains controversial. The Nima Basin along the Jurassic-Cretaceous Bangong Suture in central Tibet provides well-dated records of exhumation in this area. Here, we present detrital zircon U-Pb, apatite U-Th/He (AHe) and apatite fission track data (AFT) from upper Cretaceous and Oligocene red sandstones and conglomerates in the Nima Basin, as well as from the Xiabie granite in the hanging wall of the basin-bounding Muggar Thrust. 4 granite conglomerate clasts from the above yield zircon U-Pb ages ranging between 114-122 Ma, which likely come from the Xiabie granite. 7 granitoid/sandstone conglomerate clasts yield AHe ages ranging from 21-58 Ma, while AFT ages range from 34-83 Ma. Thermal history inversion modelling for five of the above samples show a consistent rapid cooling from 100 ℃ to 30 ℃ between 50-40 Ma, the cooling rate decreased significantly after 40 Ma. Implications of these data, integrated in the context of previously published data for the wider region (e.g. Rohrmann et al. 2012; Haider et al., 2013; Li et al., 2019) will be discussed.</p><p> </p><p><strong>Reference</strong></p><p>Rohrmann, A et al., 2012, Thermochronologic evidence for plateau formation in central Tibet by 45 Ma: Geology, v. 40, p. 187-190.</p><p>Haider, V. L et al., 2013, Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau: Journal of Asian Earth Sciences, v. 70-71, p. 79-98.</p><p>Li, H. A et al., 2019, The formation and expansion of the eastern Proto-Tibetan Plateau: Insights from low-temperature thermochronology: Journal of Asian Earth Sciences, v. 183, 103975.</p>


2020 ◽  
Vol 24 (2) ◽  
pp. 115-138
Author(s):  
Matteo Compareti

In the light of recent investigations by archaeologists and historians of art, several textile decorative patterns that have been uncritically attributed to Sasanian Persia in the past should be considered most likely Central Asian creations. Typical Iranian composite creatures, such as the so-called simurgh, had become very popular in Eurasia since the 7th century A.D. However, for some reason not completely clear, the so-called simurgh was not adopted by Central Asian Buddhists who, on the contrary, accepted other Iranian (possibly Sogdian) motifs, such as the wild boar head, the winged horse and birds holding a necklace in their beak within pearl roundel frames. The presence of such Iranian decorative motifs in monumental arts or objects of luxury arts (textiles, metalwork, glass, etc.) could be a valid instrument to propose better chronologies for excavated artifacts on a very wide area, which includes Persia, the Caucasus, Central Asia, and the Tibetan Plateau as well.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jiekun He ◽  
Siliang Lin ◽  
Jiatang Li ◽  
Jiehua Yu ◽  
Haisheng Jiang

AbstractThe Tibetan Plateau (TP) and surrounding regions have one of the most complex biotas on Earth. However, the evolutionary history of these regions in deep time is poorly understood. Here, we quantify the temporal changes in beta dissimilarities among zoogeographical regions during the Cenozoic using 4,966 extant terrestrial vertebrates and 1,278 extinct mammal genera. We identify ten present-day zoogeographical regions and find that they underwent a striking change over time. Specifically, the fauna on the TP was close to the Oriental realm in deep time but became more similar to the Palearctic realms more recently. The present-day zoogeographical regions generally emerged during the Miocene/Pliocene boundary (ca. 5 Ma). These results indicate that geological events such as the Indo-Asian Collision, the TP uplift, and the aridification of the Asian interior underpinned the evolutionary history of the zoogeographical regions surrounding the TP over different time periods.


Author(s):  
Yin Liu ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Kefa Zhou ◽  
Rongshe Li ◽  
...  

Carboniferous-Triassic magmatism in northern Qiangtang, central Tibet, China, played a key role in the evolution of the Tibetan Plateau yet remains a subject of intense debate. New geochronological and geochemical data from adakitic, Nb-enriched, and normal arc magmatic rocks, integrated with results from previous studies, enable us to determine the Carboniferous-Triassic (312−205 Ma), arc-related, plutonic-volcanic rocks in northern Qiangtang. Spatial-temporal relationships reveal three periods of younging including southward (312−252 Ma), rapid northward (249−237 Ma), and normal northward (234−205 Ma) migrations that correspond to distinct slab geodynamic processes including continentward slab shallowing, rapid trenchward slab rollback, and normal trenchward rollback of the Jinsha Paleotethys rather than the Longmuco-Shuanghu Paleotethys, respectively. Moreover, varying degrees of coexistence of adakites/High-Mg andesites (HMAs)/Nb-enriched basalt-andesites (NEBs) and intraplate basalts in the above-mentioned stages is consistent with the magmatic effects of slab window triggered by ridge subduction, which probably started since the Late Carboniferous and continued into the Late Triassic. The Carboniferous-Triassic multiple magmatic migrations and ridge-subduction scenarios provide new insight into the geodynamic processes of the Jinsha Paleotethys and the growth mechanism of the Tibetan Plateau.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dongxu Cai ◽  
Xianyan Wang ◽  
Guangwei Li ◽  
Wenbin Zhu ◽  
Huayu Lu

The interaction of surface erosion (e.g., fluvial incision) and tectonic uplift shapes the landform in the Tibetan Plateau. The Lhasa River flows toward the southwest across the central Gangdese Mountains in the southern Tibetan Plateau, characterized by a low-relief and high-elevation landscape. However, the evolution of low-relief topography and the establishment of the Lhasa River remain highly under debate. Here, we collected thermochronological ages reported in the Lhasa River drainage, using a 3D thermokinematic model to invert both late Cenozoic denudation and relief history of the Lhasa River drainage. Our results show that the Lhasa River drainage underwent four-phase denudation history, including two-stage rapid denudation at ∼25–16 Ma (with a rate of ∼0.42 km/Ma) and ∼16–12 Ma (with a rate of ∼0.72 km/Ma). In the latest Oligocene–early Miocene, uplift of the Gangdese Mountains triggered the rapid denudation and the formation of the current main drainage of the Lhasa River. In the middle Miocene, the second stage of the rapid denudation and the high relief were associated with intense incision of the Lhasa River, which is probably due to the enhanced Asian summer monsoon precipitation. This later rapid episode was consistent with the records of regional main drainage systems. After ∼12 Ma, the denudation rate decreases rapidly, and the relief of topography in the central Gangdese region was gradually subdued. This indicates that the fluvial erosion resulting from Asian monsoon precipitation increase significantly impacts on the topographic evolution in the central Gangdese region.


2021 ◽  
Vol 13 (2) ◽  
pp. 157-166
Author(s):  
Alla Mihaylovna Shustova

The study of G. Roerichs scientific heritage is at its beginning. An important basis of Roerichs many-sided scientific activities were his investigations during the expeditions in Asia. The longest, most dangerous and laborious among them was the Central Asiatic expedition of his father - N.K. Roerich. The goal of this article is to examine G.N. Roerichs activities on every stage of the Central Asiatic expedition, as well as G.N. Roerichs works, publishing the results of the expedition research. G.N. Roerich presented the basic results in his monograph Trails to Inmost Asia: Five years of exploration with the Roerich Central Asian Expedition published in English in USA in 1931. Roerichs description of North and Central Tibet is unique because the theocratic state in Tibet and nomad tribes, which Roerich had observed, are no more existing. Roerichs field investigations continued the historical tradition of Russian expeditions in Central Asia. It extended our scientific knowledge about the insufficiently known regions in Asia.


Author(s):  
Yue Qi ◽  
Qiang Wang ◽  
Gang-jian Wei ◽  
Xiu-Zheng Zhang ◽  
Wei Dan ◽  
...  

Diverse rock types and contrasting geochemical compositions of post-collisional mafic rocks across the Tibetan Plateau indicate that the underlying enriched lithospheric mantle is heterogeneous; however, how these enriched mantle sources were formed is still debated. The accreted terranes within the Tibetan Plateau experienced multiple stages of evolution. To track the geochemical characteristics of their associated lithospheric mantle through time, we can use mantle-derived magmas to constrain the mechanism of mantle enrichment. We report zircon U-Pb ages, major and trace element contents, and Sr-Nd isotopic compositions for Early Cretaceous and late Eocene mafic rocks in the southern Qiangtang terrane. The Early Cretaceous Baishagang basalts (107.3 Ma) are characterized by low K2O/Na2O (<1.0) ratios, arc-like trace element patterns, and uniform Sr-Nd isotopic compositions [(87Sr/86Sr)i = 0.7067−0.7073, εNd(t) = −0.4 to −0.2]. We suggest that the Baishagang basalts were derived from partial melting of enriched lithospheric mantle that was metasomatized by subducted Bangong−Nujiang oceanic material. We establish the geochemistry of the pre-collisional enriched lithospheric mantle under the southern Qiangtang terrane by combining our data with those from other Early Cretaceous mafic rocks in the region. The late Eocene (ca. 35 Ma) post-collisional rocks in the southern Qiangtang terrane have low K2O/Na2O (<1.0) ratios, and their major element, trace element, and Sr-Nd isotopic compositions [(87Sr/86Sr)i = 0.7042−0.7072, εNd(t) = −4.5 to +1.5] are similar to those of the Early Cretaceous mafic rocks. Based on the distribution, melting depths, and whole-rock geochemical compositions of the Early Cretaceous and late Eocene mafic rocks, we argue that the primitive late Eocene post-collisional rocks were derived from pre-collisional enriched lithospheric mantle, and the evolved samples were produced by assimilation and fractional crystallization of primary basaltic magma. Asthenosphere upwelling in response to the removal of lithospheric mantle induced the partial melting of enriched lithospheric mantle at ca. 35 Ma.


2021 ◽  
Author(s):  
Chihao Chen ◽  
Yan Bai ◽  
Xiaomin Fang ◽  
Haichao Guo ◽  
Weilin Zhang ◽  
...  

<p>As an important driver of global climate change during the Cenozoic, the uplift of the Tibetan Plateau (TP) has strongly influenced the origination and evolution of the Asian monsoon system, and therefore the aridification of central Asia. Over the last two decades, the application of stable isotope paleoaltimeters and the discoveries of mammal and plant fossils have greatly promoted the understanding of the uplift history of the TP. However, paleoaltitudinal reconstructions based on different paleoaltimeters have suggested differing outcomes and therefore remain controversial. Novel paleoaltimeters have therefore needed to be developed and applied to constrain the uplift history of the TP more accurately and effectively by comparing and verifying multi-proxies. Paleothermometers based on glyceryl dialkyl glycerol tetraethers (GDGTs) are widely used in terrestrial and ocean temperature reconstructions. In this study, GDGT-based paleothermometers were tentatively applied to the Gyirong Basin on the southern TP, and the Xining Basins on the northern TP, in an attempt to quantitatively reconstruct their paleoaltitudes.</p><p>Both soil and aquatic-typed branched GDGTs have been identified from Late Miocene to Mid-Pliocene (7.0-3.2 Ma) samples taken from the Gyirong Basin; their reconstructed paleotemperatures were 7.5±3.3°C and 14.2±4.5°C, respectively. The former temperature may represent the mean temperature of the terrestrial organic matter input area, while the latter may represent the lake surface temperature. The results would suggest that the lake surface of the Gyirong Basin during the Late Miocene to Mid-Pliocene was 2.5±0.8 km and that the surrounding mountains exceeded 3.6±0.6 km, implying that the central Himalayas underwent a rapid uplift of ~1.5 km after the Mid-Pliocene.</p><p>GDGT-based paleotemperature reconstructions using MBT'<sub>5ME</sub> values show that the Xining Basin dropped in temperature by ~10°C during the ~10.5-8 Ma period, exceeding that in sea surface temperatures and low-altitude terrestrial temperatures during these periods. By combining these results with contemporaneous tectonic and sedimentary records, we infer that these cooling events signaled the regional uplift with the amplitude of ~1 km of the Xining basins. Our results support that the TP was still growing and uplifting substantially since the Late Miocene, which may provide new evidence for understanding the growth, expansion and uplift patterns of the TP.</p>


Sign in / Sign up

Export Citation Format

Share Document