scholarly journals Pliocene three-dimensional global ocean temperature reconstruction

2009 ◽  
Vol 5 (4) ◽  
pp. 769-783 ◽  
Author(s):  
H. J. Dowsett ◽  
M. M. Robinson ◽  
K. M. Foley

Abstract. The thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water temperature estimates from 27 locations produced using Mg/Ca paleothermometry based upon the ostracod genus Krithe. Deep water temperature estimates are skewed toward the Atlantic Basin (63% of the locations) and represent depths from 1000 m to 4500 m. This reconstruction, meant to serve as a validation data set as well as an initialization for coupled numerical climate models, assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW) production (relative to present day) as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period.

2009 ◽  
Vol 5 (4) ◽  
pp. 1901-1928 ◽  
Author(s):  
H. J. Dowsett ◽  
M. M. Robinson ◽  
K. M. Foley

Abstract. A snapshot of the thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water temperature estimates produced using Mg/Ca paleothermometry. This reconstruction assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW) production (relative to present day) as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Naima El bani Altuna ◽  
Tine Lander Rasmussen ◽  
Mohamed Mahmoud Ezat ◽  
Sunil Vadakkepuliyambatta ◽  
Jeroen Groeneveld ◽  
...  

AbstractChanges in the Arctic climate-ocean system can rapidly impact carbon cycling and cryosphere. Methane release from the seafloor has been widespread in the Barents Sea since the last deglaciation, being closely linked to changes in pressure and bottom water temperature. Here, we present a post-glacial bottom water temperature record (18,000–0 years before present) based on Mg/Ca in benthic foraminifera from an area where methane seepage occurs and proximal to a former Arctic ice-sheet grounding zone. Coupled ice sheet-hydrate stability modeling shows that phases of extreme bottom water temperature up to 6 °C and associated with inflow of Atlantic Water repeatedly destabilized subsurface hydrates facilitating the release of greenhouse gasses from the seabed. Furthermore, these warming events played an important role in triggering multiple collapses of the marine-based Svalbard-Barents Sea Ice Sheet. Future warming of the Atlantic Water could lead to widespread disappearance of gas hydrates and melting of the remaining marine-terminating glaciers.


2014 ◽  
Vol 11 (5) ◽  
pp. 2391-2422
Author(s):  
F. Miesner ◽  
A. Lechleiter ◽  
C. Müller

Abstract. Temperature fields in marine sediments are studied for various purposes. Often, the target of research is the steady state heat flow as a (possible) source of energy but there are also studies attempting to reconstruct bottom water temperature variations to understand more about climate history. The bottom water temperature propagates into the sediment to different depths, depending on the amplitude and period of the deviation. The steady state heat flow can only be determined when the bottom water temperature is constant while the bottom water temperature history can only be reconstructed when the deviation has an amplitude large enough or the measurements are taken in great depths. In this work, the aim is to reconstruct recent bottom water temperature history such as the last two years. To this end, measurements to depths of up to 6 m shall be adequate and amplitudes smaller than 1 K should be reconstructable. First, a commonly used forward model is introduced and analyzed: knowing the bottom water temperature deviation in the last years and the thermal properties of the sediments, the forward model gives the sediment temperature field. Next, an inversion operator and two common inversion schemes are introduced. The analysis of the inversion operator and both algorithms is kept short, but sources for further reading are given. The algorithms are then tested for artificial data with different noise levels and for two example data sets, one from the German North Sea and one from the Davis Strait. Both algorithms show good and stable results for artificial data. The achieved results for measured data have low variances and match to the observed oceanographic settings. Lastly, the desired and obtained accuracy are discussed. For artificial data, the presented method yields satisfying results. However, for measured data the interpretation of the results is more difficult as the exact form of the bottom water deviation is not known. Nevertheless, the presented inversion method seems rather promising due to its accuracy and stability for artificial data. Continuing to work on the development of more sophisticated models for the bottom water temperature, we hope to cover more different oceanographic settings in the future.


2020 ◽  
Vol 14 (7) ◽  
pp. 2189-2203
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Stefan Hendricks ◽  
Jens Hoelemann ◽  
Markus A. Janout ◽  
...  

Abstract. The gridded sea ice thickness (SIT) climate data record (CDR) produced by the European Space Agency (ESA) Sea Ice Climate Change Initiative Phase 2 (CCI-2) is the longest available, Arctic-wide SIT record covering the period from 2002 to 2017. SIT data are based on radar altimetry measurements of sea ice freeboard from the Environmental Satellite (ENVISAT) and CryoSat-2 (CS2). The CCI-2 SIT has previously been validated with in situ observations from drilling, airborne remote sensing, electromagnetic (EM) measurements and upward-looking sonars (ULSs) from multiple ice-covered regions of the Arctic. Here we present the Laptev Sea CCI-2 SIT record from 2002 to 2017 and use newly acquired ULS and upward-looking acoustic Doppler current profiler (ADCP) sea ice draft (VAL) data for validation of the gridded CCI-2 and additional satellite SIT products. The ULS and ADCP time series provide the first long-term satellite SIT validation data set from this important source region of sea ice in the Transpolar Drift. The comparison of VAL sea ice draft data with gridded monthly mean and orbit trajectory CCI-2 data, as well as merged CryoSat-2–SMOS (CS2SMOS) sea ice draft, shows that the agreement between the satellite and VAL draft data strongly depends on the thickness of the sampled ice. Rather than providing mean sea ice draft, the considered satellite products provide modal sea ice draft in the Laptev Sea. Ice drafts thinner than 0.7 m are overestimated, while drafts thicker than approximately 1.3 m are increasingly underestimated by all satellite products investigated for this study. The tendency of the satellite SIT products to better agree with modal sea ice draft and underestimate thicker ice needs to be considered for all past and future investigations into SIT changes in this important region. The performance of the CCI-2 SIT CDR is considered stable over time; however, observed trends in gridded CCI-2 SIT are strongly influenced by the uncertainties of ENVISAT and CS2 and the comparably short investigation period.


2016 ◽  
Author(s):  
Janin Schaffer ◽  
Ralph Timmermann ◽  
Jan Erik Arndt ◽  
Steen Savstrup Kristensen ◽  
Christoph Mayer ◽  
...  

Abstract. The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies and global surface height on a spherical grid with now 30-arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Sermilik Fjord assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database at https://doi.pangaea.de/10.1594/PANGAEA.856844.


2018 ◽  
Author(s):  
Svein Østerhus ◽  
Rebecca Woodgate ◽  
Héðinn Valdimarsson ◽  
Bill Turrell ◽  
Laura de Steur ◽  
...  

Abstract. The Arctic Mediterranean (AM) is the collective name for the Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Into this region, water enters through the Bering Strait (Pacific inflow) and through the passages across the Greenland-Scotland Ridge (Atlantic inflow) and then modified within the AM. The modified waters leave the AM in several flow branches, which are grouped into two different categories: (1) overflow of dense water through the deep passages across the Greenland-Scotland Ridge, and (2) outflow of light water – here termed surface outflow – on both sides of Greenland. These exchanges transport heat, salt, and other substances into and out of the AM and are important for conditions in the AM. They are also part of the global ocean circulation and climate system. Attempts to quantify the transports by various methods have been made for many years, but only recently, has the observational coverage become sufficiently complete to allow an integrated assessment of the AM-exchanges based solely on observations. In this study, we focus on the transport of water and have collected data on volume transport for as many AM-exchange branches as possible between 1993–2015. The total AM-import (oceanic inflows plus freshwater) is found to be 9.1 ± 0.7 Sv (1 Sv = 106 m3 s−1) and has a seasonal variation of amplitude close to 1 Sv and maximum import in October. Roughly one third of the imported water leaves the AM as surface outflow with the remaining two thirds leaving as overflow. The overflow is mainly produced from modified Atlantic inflow and around 70 % of the total Atlantic inflow is converted into overflow, indicating a strong coupling between these two exchanges. The surface outflow is fed from the Pacific inflow and freshwater, but is still ~ 2/3rds from modified Atlantic water. For the inflow branches and the two main overflow branches (Denmark Strait and Faroe Bank Channel), systematic monitoring of volume transport has been established since the mid-1990s and this allows us to estimate trends for the AM-exchanges as a whole. At the 95 % level, only the inflow of Pacific water through the Bering Strait showed a statistically significant trend, which was positive. Both the total AM-inflow and the combined transport of the two main overflow branches also showed trends consistent with strengthening, but they were not statistically significant. They do suggest, however, that any significant weakening of these flows during the last two decades is unlikely and the overall message is that the AM-exchanges remained remarkably stable in the period from the mid-1990s to the mid-2010s. The overflows are the densest source water for the deep limb of the North Atlantic part of the Meridional Overturning Circulation (AMOC), and this conclusion argues that the reported weakening of the AMOC was not due to overflow weakening or reduced overturning in the AM. Although the combined data set has made it possible to establish a consistent budget for the AM-exchanges, the observational coverage for some of the branches is limited, which introduces considerable uncertainty. This lack of coverage is especially extreme for the surface outflows through the Denmark Strait, the overflow across the Iceland-Faroe Ridge, and the inflow over the Scottish shelf. We recommend that more effort is put into observing these flows as well as maintaining the monitoring systems established for the other exchange branches.


2012 ◽  
Vol 47 (3-4) ◽  
pp. 198-214 ◽  
Author(s):  
Frederic Dupont ◽  
Padala Chittibabu ◽  
Vincent Fortin ◽  
Yerubandi R. Rao ◽  
Youyu Lu

Environment Canada recently developed a coupled lake–atmosphere–hydrological modelling system for the Laurentian Great Lakes. This modelling system consists of the Canadian Regional Deterministic Prediction System (RDPS), which is based on the Global Environmental Multiscale model (GEM), the MESH (Modélisation Environnementale Surface et Hydrologie) surface and river routing model, and a hydrodynamic model based on the three-dimensional global ocean model Nucleus for European Modelling of the Ocean (NEMO). This paper describes the performance of the NEMO model in the Great Lakes. The model was run from 2004 to 2009 with atmospheric forcing from GEM and river forcing from the MESH modelling system for the Great Lakes region and compared with available observations in selected lakes. The NEMO model is able to produce observed variations of lake levels, ice concentrations, lake surface temperatures, surface currents and vertical thermal structure reasonably well in most of the Great Lakes. However, the model produced a diffused thermocline in the central basin of Lake Erie. The model predicted evaporation is relatively strong in the upper lakes. Preliminary results of the modelling system indicate that the model needs further improvements in atmospheric–lake exchange bulk formulae and surface mixed layer physics.


Sign in / Sign up

Export Citation Format

Share Document