scholarly journals Pliocene three-dimensional global ocean temperature reconstruction

2009 ◽  
Vol 5 (4) ◽  
pp. 1901-1928 ◽  
Author(s):  
H. J. Dowsett ◽  
M. M. Robinson ◽  
K. M. Foley

Abstract. A snapshot of the thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water temperature estimates produced using Mg/Ca paleothermometry. This reconstruction assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW) production (relative to present day) as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period.

2009 ◽  
Vol 5 (4) ◽  
pp. 769-783 ◽  
Author(s):  
H. J. Dowsett ◽  
M. M. Robinson ◽  
K. M. Foley

Abstract. The thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water temperature estimates from 27 locations produced using Mg/Ca paleothermometry based upon the ostracod genus Krithe. Deep water temperature estimates are skewed toward the Atlantic Basin (63% of the locations) and represent depths from 1000 m to 4500 m. This reconstruction, meant to serve as a validation data set as well as an initialization for coupled numerical climate models, assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW) production (relative to present day) as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period.


Author(s):  
Martin Solan ◽  
Ellie R. Ward ◽  
Christina L. Wood ◽  
Adam J. Reed ◽  
Laura J. Grange ◽  
...  

Arctic marine ecosystems are undergoing rapid correction in response to multiple expressions of climate change, but the consequences of altered biodiversity for the sequestration, transformation and storage of nutrients are poorly constrained. Here, we determine the bioturbation activity of sediment-dwelling invertebrate communities over two consecutive summers that contrasted in sea-ice extent along a transect intersecting the polar front. We find a clear separation in community composition at the polar front that marks a transition in the type and amount of bioturbation activity, and associated nutrient concentrations, sufficient to distinguish a southern high from a northern low. While patterns in community structure reflect proximity to arctic versus boreal conditions, our observations strongly suggest that faunal activity is moderated by seasonal variations in sea ice extent that influence food supply to the benthos. Our observations help visualize how a climate-driven reorganization of the Barents Sea benthic ecosystem may be expressed, and emphasize the rapidity with which an entire region could experience a functional transformation. As strong benthic-pelagic coupling is typical across most parts of the Arctic shelf, the response of these ecosystems to a changing climate will have important ramifications for ecosystem functioning and the trophic structure of the entire food web. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


2012 ◽  
Vol 47 (3-4) ◽  
pp. 198-214 ◽  
Author(s):  
Frederic Dupont ◽  
Padala Chittibabu ◽  
Vincent Fortin ◽  
Yerubandi R. Rao ◽  
Youyu Lu

Environment Canada recently developed a coupled lake–atmosphere–hydrological modelling system for the Laurentian Great Lakes. This modelling system consists of the Canadian Regional Deterministic Prediction System (RDPS), which is based on the Global Environmental Multiscale model (GEM), the MESH (Modélisation Environnementale Surface et Hydrologie) surface and river routing model, and a hydrodynamic model based on the three-dimensional global ocean model Nucleus for European Modelling of the Ocean (NEMO). This paper describes the performance of the NEMO model in the Great Lakes. The model was run from 2004 to 2009 with atmospheric forcing from GEM and river forcing from the MESH modelling system for the Great Lakes region and compared with available observations in selected lakes. The NEMO model is able to produce observed variations of lake levels, ice concentrations, lake surface temperatures, surface currents and vertical thermal structure reasonably well in most of the Great Lakes. However, the model produced a diffused thermocline in the central basin of Lake Erie. The model predicted evaporation is relatively strong in the upper lakes. Preliminary results of the modelling system indicate that the model needs further improvements in atmospheric–lake exchange bulk formulae and surface mixed layer physics.


2020 ◽  
Author(s):  
Maria Luisa Sánchez-Montes ◽  
Nikolai Pedentchouk ◽  
Thomas Mock ◽  
Simon Belt ◽  
Lukas Smik

<p>Sea ice is a crucial component of the Earth’s climate system, which helps regulate global ocean and atmosphere’s temperature. The alarming decline in sea-ice extent and thickness under modern climate conditions has created the urgency to understand the long-term sea-ice variability and mechanisms of change. In recent years, the highly branched isoprenoid (HBI) lipid biomarker IP<sub>25</sub> has emerged as a powerful proxy measure of past sea ice in the Arctic, and its analysis in a variety of marine sediments has provided the foundation for a large number of palaeo sea ice reconstructions spanning thousands to millions of years before present. To date, IP<sub>25</sub> and related HBI-based studies have focussed largely on reconstructions of sea-ice extent and seasonal dynamics. Here we aim to further develop such sea ice proxies by measuring the changes in distribution and isotopic composition of HBIs in HBI-producing diatoms grown under different controlled laboratory conditions. We present preliminary results from the diatom <em>Haslea ostrearia</em> and outline the next steps of our research in the coming year.</p>


2019 ◽  
Vol 59 (2) ◽  
pp. 213-221 ◽  
Author(s):  
G. V. Alekseev ◽  
N. I. Glok ◽  
A. E. Vyasilova ◽  
N. E. Ivanov ◽  
N. E. Kharlanenkova ◽  
...  

Sea ice fields in the Antarctic, in contrast to the Arctic ones, did not show a reduction in observed global warming, whereas the global climate models indicate its certain decrease. The purpose of the study is to explain this climatic phenomenon on the basis of the idea of joint dynamics of oceanic structures in the Southern Ocean – the Antarctic polar front and the margin of the maximum distribution of sea ice. We used data from the ERA/Interim and HadISST as well as the database on the sea ice for 1979–2017. Relationship between the SST-anomalies in low latitudes of the Northern hemisphere and positions of the Antarctic polar front and maximum sea-ice extent was investigated. It was found that locations of these structures changed under the influence of the SST anomalies in low latitudes. The results obtained confirm existence of the opposite trends in changes in the sea ice extent in the Arctic and Antarctic under the influence of the SST anomalies in the central North Atlantic Ocean. When positive, the anomalies cause a shift of the Intertropical Convergence Zone (ITCZ) and the Hadley circulation to the North, while, on the contrary, the negative anomaly promotes the corresponding shift of the Antarctic polar front, followed by the boundary of sea ice.


2019 ◽  
Vol 19 (15) ◽  
pp. 10239-10256 ◽  
Author(s):  
Ingeborg E. Nielsen ◽  
Henrik Skov ◽  
Andreas Massling ◽  
Axel C. Eriksson ◽  
Manuel Dall'Osto ◽  
...  

Abstract. There are limited measurements of the chemical composition, abundance and sources of atmospheric particles in the High Arctic To address this, we report 93 d of soot particle aerosol mass spectrometer (SP-AMS) data collected from 20 February to 23 May 2015 at Villum Research Station (VRS) in northern Greenland (81∘36′ N). During this period, we observed the Arctic haze phenomenon with elevated PM1 concentrations ranging from an average of 2.3, 2.3 and 3.3 µg m−3 in February, March and April, respectively, to 1.2 µg m−3 in May. Particulate sulfate (SO42-) accounted for 66 % of the non-refractory PM1 with the highest concentration until the end of April and decreasing in May. The second most abundant species was organic aerosol (OA) (24 %). Both OA and PM1, estimated from the sum of all collected species, showed a marked decrease throughout May in accordance with the polar front moving north, together with changes in aerosol removal processes. The highest refractory black carbon (rBC) concentrations were found in the first month of the campaign, averaging 0.2 µg m−3. In March and April, rBC averaged 0.1 µg m−3 while decreasing to 0.02 µg m−3 in May. Positive matrix factorization (PMF) of the OA mass spectra yielded three factors: (1) a hydrocarbon-like organic aerosol (HOA) factor, which was dominated by primary aerosols and accounted for 12 % of OA mass, (2) an Arctic haze organic aerosol (AOA) factor and (3) a more oxygenated marine organic aerosol (MOA) factor. AOA dominated until mid-April (64 %–81 % of OA), while being nearly absent from the end of May and correlated significantly with SO42-, suggesting the main part of that factor is secondary OA. The MOA emerged late at the end of March, where it increased with solar radiation and reduced sea ice extent and dominated OA for the rest of the campaign until the end of May (24 %–74 % of OA), while AOA was nearly absent. The highest O∕C ratio (0.95) and S∕C ratio (0.011) was found for MOA. Our data support the current understanding that Arctic aerosols are highly influenced by secondary aerosol formation and receives an important contribution from marine emissions during Arctic spring in remote High Arctic areas. In view of a changing Arctic climate with changing sea-ice extent, biogenic processes and corresponding source strengths, highly time-resolved data are needed in order to elucidate the components dominating aerosol concentrations and enhance the understanding of the processes taking place.


The Holocene ◽  
2016 ◽  
Vol 27 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Greta B Kristjánsdóttir ◽  
Matthias Moros ◽  
John T Andrews ◽  
Anne E Jennings

To evaluate whether proxies that record surface, near-surface, and bottom water conditions from the North Iceland shelf have similar trends and periodicities, we examine Holocene century-scale paleoceanographic records from core MD99-2269. This core site lies close to the boundary between Atlantic and Arctic/Polar waters, and in an area frequently influenced by drift ice. The proxies are stable δ13C and δ18O values on planktonic and benthic foraminifera, alkenone-based sea-surface temperatures (SST°C), and foraminiferal Mg/Ca SST°C and bottom water temperature (BWT°C) estimates. These data were converted to equi-spaced 60-year time-series; significant trends were extracted using Singular Spectrum Analysis, which accounted for between 50% and 70% of the variance. In order to evaluate within-site ocean climate variability, a comparison between these data and previously published proxies from MD99-2269 was carried out on a standardized data set of 14 proxies covering the interval 400–9200 cal. yr BP. Principal component (PC) analysis indicated that the first two PC axes accounted for 57% of the variability with high loadings primarily defining ‘nutrient’ and ‘temperature’ proxies. Fuzzy k-mean clustering of the 14 climate proxies indicated major environmental changes at ~6350 and ~3450 cal. yr BP, which define local early-, middle-, and late-Holocene climatic shifts. Our results indicate that the major control on the combined proxy signal is the Holocene decrease in June insolation, but regional changes in such factors as sea-ice extent and salinity are required to explain the threefold division of the Holocene.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Naima El bani Altuna ◽  
Tine Lander Rasmussen ◽  
Mohamed Mahmoud Ezat ◽  
Sunil Vadakkepuliyambatta ◽  
Jeroen Groeneveld ◽  
...  

AbstractChanges in the Arctic climate-ocean system can rapidly impact carbon cycling and cryosphere. Methane release from the seafloor has been widespread in the Barents Sea since the last deglaciation, being closely linked to changes in pressure and bottom water temperature. Here, we present a post-glacial bottom water temperature record (18,000–0 years before present) based on Mg/Ca in benthic foraminifera from an area where methane seepage occurs and proximal to a former Arctic ice-sheet grounding zone. Coupled ice sheet-hydrate stability modeling shows that phases of extreme bottom water temperature up to 6 °C and associated with inflow of Atlantic Water repeatedly destabilized subsurface hydrates facilitating the release of greenhouse gasses from the seabed. Furthermore, these warming events played an important role in triggering multiple collapses of the marine-based Svalbard-Barents Sea Ice Sheet. Future warming of the Atlantic Water could lead to widespread disappearance of gas hydrates and melting of the remaining marine-terminating glaciers.


2020 ◽  
Author(s):  
David J. Harning ◽  
Anne E. Jennings ◽  
Denizcan Köseoğlu ◽  
Simon T. Belt ◽  
Áslaug Geirsdóttir ◽  
...  

Abstract. Marine fronts delineate the boundary between distinct water masses and, through the advection of nutrients, are important facilitators of regional productivity and biodiversity. As the modern climate continues to change the migration frontal zones is evident, but a lack of information about their status prior to instrumental records hinders future projections. Here, we combine data from lipid biomarkers (archaeal isoprenoid glycerol dibiphytanyl glycerol tetraethers and algal highly branched isoprenoids) with planktic and benthic foraminifera assemblage to detail the biological response of the marine Arctic and Polar Front migrations on the North Iceland Shelf (NIS) over the last 8 ka. This multi-proxy approach enables us to quantify the thermal structure relating to Arctic and Polar Front migration, and test how this influences the corresponding changes in local pelagic productivity. Our data show that following an interval of Atlantic Water influence, the Arctic Front and its associated high pelagic productivity stabilized on the NIS at ~ 6.1 ka BP. Following a subsequent trend of regional cooling, Polar Water from the East Greenland Current and the associated Polar Front spread onto the NIS by ~ 3.8 ka BP, greatly diminishing local algal productivity. Within the last century, the Arctic and Polar Fronts have moved back to their current positions relative to the NIS and helped stimulate the productivity that partially supports Iceland's economy. Our Holocene records from the NIS provide important analogues for how the current frontal configuration and the productivity that it supports may change as global temperatures continue to rise.


2011 ◽  
Vol 24 (6) ◽  
pp. 1705-1717 ◽  
Author(s):  
Camille Lique ◽  
Gilles Garric ◽  
Anne-Marie Treguier ◽  
Bernard Barnier ◽  
Nicolas Ferry ◽  
...  

Abstract The authors investigate the variability of salinity in the Arctic Ocean and in the Nordic and Labrador Seas over recent years to see how the freshwater balance in the Arctic and the exchanges with the North Atlantic have been affected by the recent important sea ice melting, especially during the 2007 sea ice extent minimum. The Global Ocean Reanalysis and Simulations (GLORYS1) global ocean reanalysis based on a global coupled ocean–sea ice model with an average of 12-km grid resolution in the Arctic Ocean is used in this regard. Although no sea ice data and no data under sea ice are assimilated, simulation over the 2001–09 period is shown to represent fairly well the 2007 sea ice event and the different components accounting for the ocean and sea ice freshwater budget, compared to available observations. In the reanalysis, the 2007 sea ice minimum is due to an increase of the sea ice export through Fram Strait (25%) and an important sea ice melt in the Arctic (75%). Liquid freshwater is accumulated in the Beaufort gyre after 2002, in agreement with recent observations, and it is shown that this accumulation is due to both the sea ice melt and a spatial redistribution of the freshwater content in the Canadian Basin. In the Eurasian Basin, a very contrasting situation is found with an increase of the salinity. The effect of the sea ice melt is counterbalanced by an increase of the Atlantic inflow and a modification of the circulation north of Fram Strait after 2007. The authors suggest that a strong anomaly of the atmospheric conditions was responsible for this change of the circulation.


Sign in / Sign up

Export Citation Format

Share Document