scholarly journals Performance analysis of a basin-type solar still during harmattan

2022 ◽  
Author(s):  
Omololu Ogunseye ◽  
Kamar Oladepo

Abstract. This study investigates the variational effect of climate factors on the productivity of a basin-type solar still during the harmattan season under the tropical savanna climate. The study was extended to examine the influences of selected climatic, operational, and design (COD) parameters on productivity. Additionally, the efficiency of solar still in removing water impurities during harmattan was also investigated. Explorative data and statistical analysis, and laboratory testing methods were used for these investigations. Results show that seasonal effects of harmattan can either increase or lower productivity. The effect of wind speed on productivity was not clearly defined during the harmattan season. Although high irradiation is essential for increased productivity, its effect is modified by other factors. Water temperature is the most significant to productivity amongst selected factors studied via the design of experiment (DOE). Moreover, the effect of harmattan on the water quality produced was not established. The main contribution of this work is the insights generated for both qualitative and quantitative reliability performance of a basin-type solar still under prevailing climate conditions.

The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Kury Milena Souza ◽  
Moreira Luciane Silva ◽  
Cordeiro Renato Campello ◽  
Sifeddine Abdelfettah ◽  
Turcq Bruno ◽  
...  

As an ecotone, the region between the Amazon Rainforest and Tropical Savanna (Cerrado) biomes is, by definition, more susceptible to climate change. Therefore, understanding palaeoenvironmental dynamics is essential to address the future responses of such transition areas to climatic fluctuations. In this context, we present a new sediment record for the Late-Holocene retrieved from Barro-Preto, currently an oxbow lake located in an ecotone at the southern Brazilian Amazon border. Our multi-proxy data include carbon and nitrogen isotopes, as well as bulk TOC, chlorophyll derivatives, grain-size and microcharcoal analyses, all anchored on a radiocarbon-dated chronology. The sedimentary process recorded at the Barro-Preto Lake responded to both local and regional climate dynamics. It was influenced by river excursions associated to local responses to precipitation changes by the activation of the palaeochannel connecting the main-stem river and the Barro-Preto lake. This activation was evidenced by the presence of different colour lithology laminations accompanied by coarser sediments and also by climate conditions known to influence the Amazon region. Depositional processes linked to lake dynamics and different oxbow lake cycle stages were also important to explain the changes verified in the Barro-Preto record, endorsing the use of this lake formation for palaeoclimatic reconstructions. The record indicated a rising humidity trend, reflected by a progressive increase in lacustrine productivity, in accordance to other studies carried out in the Amazon region concerning the Late-Holocene, associated with a more southward displacement of the Intertropical Convergence Zone. Despite this rising humidity trend, dry episodic events during the Late-Holocene were evidenced by charcoal data, also coherent with regional Amazon studies, albeit exhibiting increased intensity, suggesting that the transitional nature of the environment might have influenced susceptibility to fires.


2014 ◽  
Vol 513-517 ◽  
pp. 281-285
Author(s):  
Cheng Sun ◽  
Min Ju Ding ◽  
Yong Feng Zhang ◽  
Xun Tan ◽  
Peng Wang ◽  
...  

A variety of electrical apparatus used in daily life can cause fires because of internal or external factors. During cause identification of an electrical fire, the first short circuit melted marks of copper wire have been considered highly important because they are direct proofs. Additionally, overloaded short circuit caused by the overload of current due to excessive electrical usage can give rise to an electrical fire. Despite extensive research on the first short circuit in fire scenes, the overloaded short circuit remains difficult to be distinguished because of the limitation of commonly used testing methods. Conventional metallographic method is intuitionistic and simple, but may not provide detailed data of crystals such as misorientation of grains. Here a new method (electron backscattered diffraction, EBSD) is applied for identification of the first and overloaded short-circuited melted marks of copper wires in electrical fire scenes. Results show obvious morphological distinctions in melted marks of copper wires between the first and overloaded short circuits. Qualitative and Quantitative differences obtained from the contrast of the above two short circuit situations may assist for cause identification of electrical fires in the future.


2021 ◽  
Vol 13 (5) ◽  
pp. 923
Author(s):  
Qianqian Sun ◽  
Chao Liu ◽  
Tianyang Chen ◽  
Anbing Zhang

Vegetation fluctuation is sensitive to climate change, and this response exhibits a time lag. Traditionally, scholars estimated this lag effect by considering the immediate prior lag (e.g., where vegetation in the current month is impacted by the climate in a certain prior month) or the lag accumulation (e.g., where vegetation in the current month is impacted by the last several months). The essence of these two methods is that vegetation growth is impacted by climate conditions in the prior period or several consecutive previous periods, which fails to consider the different impacts coming from each of those prior periods. Therefore, this study proposed a new approach, the weighted time-lag method, in detecting the lag effect of climate conditions coming from different prior periods. Essentially, the new method is a generalized extension of the lag-accumulation method. However, the new method detects how many prior periods need to be considered and, most importantly, the differentiated climate impact on vegetation growth in each of the determined prior periods. We tested the performance of the new method in the Loess Plateau by comparing various lag detection methods by using the linear model between the climate factors and the normalized difference vegetation index (NDVI). The case study confirmed four main findings: (1) the response of vegetation growth exhibits time lag to both precipitation and temperature; (2) there are apparent differences in the time lag effect detected by various methods, but the weighted time-lag method produced the highest determination coefficient (R2) in the linear model and provided the most specific lag pattern over the determined prior periods; (3) the vegetation growth is most sensitive to climate factors in the current month and the last month in the Loess Plateau but reflects a varied of responses to other prior months; and (4) the impact of temperature on vegetation growth is higher than that of precipitation. The new method provides a much more precise detection of the lag effect of climate change on vegetation growth and makes a smart decision about soil conservation and ecological restoration after severe climate events, such as long-lasting drought or flooding.


Author(s):  
Hamdy Hassan

Abstract In this paper, a theoretical study is presented on enhancement of the solar still performance by using the exhaust gases passing inside a chimney under the still basin. The impact of the exhaust gases temperature on the solar still temperature, productivity, and efficiency are considered. The performance of solar still with chimney is compared with that of conventional solar still. The study is carried out under the hot and climate conditions of Upper Egypt. A complete transient mathematical model of the physical model including the solar still regions temperatures, productivity, and heat transfer between the solar still and the exhaust gases are constructed. The mathematical model is solved numerically by using fourth-order Runge-Kutta method and is programmed by using MATLAB. The mathematical model is validated using an experimental work. The results show that the solar still saline water temperature increases and productivity with using and rising the exhaust gases. Furthermore, the impact of using exhaust gases on the still performance in winter is greater than in summer. using chimney exhaust gases at 75 °C and 125 °C enhances the daily freshwater yield of the conventional still by more than three times and about six times in winter, respectively, and about two and half times and more than three times in summer, respectively.


Author(s):  
Juliana S. Zeymer ◽  
Paulo C. Corrêa ◽  
Gabriel H. H. de Oliveira ◽  
Fernanda M. Baptestini ◽  
Rita C. P. Freitas

ABSTRACT Lactuca sativa seeds are highly sensitive to climate conditions; thus, they should be stored securely to maintain their qualitative and quantitative characteristics. Studies on hygroscopicity aim to decrease possible changes in agricultural products under specific environmental conditions. Accordingly, this study aims to develop an appropriate mathematical model to represent the desorption isotherms of Lactuca sativa seeds. The hygroscopic equilibrium was achieved using a static-gravimetric method at temperatures of 10, 20, 30, 40 and 50 °C and water activity in the range 0.11-0.96. Six mathematical models were fitted to the experimental data of the equilibrium moisture content of Lactuca sativa seeds. The best model was chosen based on the determination coefficient (R2), magnitude of mean relative error (MRE), standard deviation of the estimate (SDE), and analysis of residue distribution. The modified Oswin model best represented the hygroscopicity of the Lactuca sativa seeds, with values of 8.02% and 0.55 for the MRE and SDE, respectively; moreover, the residual values were randomly distributed. The shape of the isotherms of the Lactuca sativa seeds estimated using the modified Oswin model is sigmoidal, which is characteristic of a type II curve.


2000 ◽  
Vol 41 (9) ◽  
pp. 883-890 ◽  
Author(s):  
Bilal A Akash ◽  
Mousa S Mohsen ◽  
Waleed Nayfeh

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
HALVINA GRASELA SAIYA ◽  
Adriana Hiariej ◽  
ANNEKE PESIK ◽  
ELIZABETH KAYA ◽  
MEITTY LOUISE HEHANUSSA ◽  
...  

Abstract. Saiya HG, Hiariej A, Pesik A, Kaya E, Hehanussa ML, Puturuhu F. 2020. Dispersion of tongka langit banana in Buru and Seram, Maluku Province, Indonesia, based on topographic and climate factors. Biodiversitas 21: 2035-2046. The aim of this research is to understand the dispersion of tongka langit banana as one of the important endemic species in Maluku and also to know the topographic and climate factors hypothetically influencing the dispersion of tongka langit banana. The associated environmental factors are an initial approach that can be used to assess why the species only exists in certain locations. The data of coordinates were collected from survey activity; meanwhile, the slope and contour data were from the Shuttle Radar Topographic Mission (SRTM); and the climate data were from Meteorology, Climatology, and Geophysical Agency through statistic data publication. Then, all data were analyzed using Remote Sensing and GIS methods. The results showed that in Buru Island, tongka langit bananas were found in four locations, with climate condition was rather wet and found on slope grade of 0-8% and 8-15%. Whereas in Seram Island, tongka langit bananas were found in fifteen locations, with wet climate conditions, and on the same condition of slope as those found in Buru island.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5734
Author(s):  
Mahmoud S. El-Sebaey ◽  
Asko Ellman ◽  
Ahmed Hegazy ◽  
Tarek Ghonim

With the rising population, environmental pollution, and social development, potable water is reducing and being contaminated day by day continually. Thus, several researchers have focused their studies on seas and oceans in order to get potable fresh water by desalination of their saltwater. Solar still of basin type is one of the available technologies to purify water because of free solar energy. The computational fluid dynamic CFD model of the solar still can significantly improve means for optimization of the solar still structure because it reduces the need for conducting large amount of experiments. Therefore, the main purpose of this study is presenting a multi-phase, three-dimensional CFD model, which predicts the performance of the solar still without using any experimental measurements, depending on the CFD solar radiation model. Simulated results are compared with experimental values of water and glass cover temperatures and yield of fresh water in climate conditions of Sheben El-Kom, Egypt (latitude 30.5° N and longitude 31.01° E). The simulation results were found to be in acceptable agreement with the experimental measured data. The results indicated that the daily simulated and experimental accumulated productivities of the single-slope solar still were found to be 1.982 and 1.785 L/m2 at a water depth of 2 cm. In addition, the simulated and experimental daily efficiency were around 16.79% and 15.5%, respectively, for the tested water depth.


Sign in / Sign up

Export Citation Format

Share Document