Advances in knowledge 10 years after the torrential rains in Madeira Island (Portugal)

Author(s):  
Rui Salgado ◽  
Flavio T. Couto ◽  
Maria Joao Costa

<p>On February 20, 2010, Madeira island was affected by a tragic event of extreme precipitation. The event was marked by huge economical damage estimated in millions of euros, and more than 40 deaths. Before the event, there were not many studies about severe precipitation in Madeira, which were highly motivated after 2010. This work intent is to show some advancements in knowledge of heavy precipitation events (HPE) in Madeira found in the last decade. The Meso-NH model was used with a rather complete parametrization package of several physical processes occurring in the atmosphere and configured into different dimensions. In order to explore the meridional water vapour transport, the total precipitable water field was extracted from the Atmospheric Infrared Sounder (AIRS) data products. In the first set of simulations, the experiments were performed with three horizontal nested domains (9 km, 3 km, and 1 km resolution). The results for the winter 2009-2010 raised two questions about the topic. First, associated with the large scale environment, and the second one linked to orographic effects. In the first case, apart from a cyclone affecting the island, it was identified the presence of atmospheric rivers (ARs) coupled to frontal systems transporting tropical moisture toward the island. For the orographic effects, the simulations at 1km resolution showed maximums of accumulated precipitation in the highlands. Subsequently, the analysis of the precipitation in Madeira highlands over a 10-year period showed dry summers and the highest rainfall amounts in the winters, although with some significant events occurring also in autumn and spring seasons. Furthermore, it was found that tropical moisture transported through the ARs may reach the island with different intensities and orientation during the winter seasons. However, for the 10 winter periods, the ARs were not the sole factor producing HPE in Madeira. In the second set of simulations, the model was configured with a larger domain of 2.5 km resolution and an inner domain of 0.5 km resolution. All the significant events in autumn 2012 were simulated confirming the orographic effect in the accumulated precipitation. The most interesting result found was the occurrence of maximums values in different regions over the island. For example, over the highlands in the central peaks and southern/northern slopes, or in the coastal plain at lowlands. From the simulations it was possible to explain the causes for the distinct rainfall patterns, and the atmospheric environments associated. The variations in the configuration of the ambient flow, jointly with the orographic forcing may produce convection in distinct regions of the island, resulting in different rainfall patterns. Ten years later, the advances in the understanding of significant precipitation in the Madeira is evident. The results show how different events may occur, since the formation or enhancement of the precipitation over the island is totally dependent on the geographic aspects and atmospheric conditions associated with each precipitating event.</p>

2012 ◽  
Vol 12 (7) ◽  
pp. 2225-2240 ◽  
Author(s):  
F. T. Couto ◽  
R. Salgado ◽  
M. J. Costa

Abstract. This paper constitutes a step towards the understanding of some characteristics associated with high rainfall amounts and flooding on Madeira Island. The high precipitation events that occurred during the winter of 2009/2010 have been considered with three main goals: to analyze the main atmospheric characteristics associated with the events; to expand the understanding of the interaction between the island and the atmospheric circulations, mainly the effects of the island on the generation or intensification of orographic precipitation; and to evaluate the performance of high resolution numerical modeling in simulating and forecasting heavy precipitation events over the island. The MESO-NH model with a horizontal resolution of 1 km is used, as well as rain gauge data, synoptic charts and measurements of precipitable water obtained from the Atmospheric InfraRed Sounder (AIRS). The results confirm the influence of the orographic effects on precipitation over Madeira as well as the tropical–extratropical interaction, since atmospheric rivers were detected in six out of the seven cases analyzed, acting as a low level moisture supplier, which together with the orographic lifting induced the high rainfall amounts. Only in one of the cases the presence of a low pressure system was identified over the archipelago.


2017 ◽  
Vol 30 (24) ◽  
pp. 9827-9845 ◽  
Author(s):  
Xin Zhou ◽  
Marat F. Khairoutdinov

Subdaily temperature and precipitation extremes in response to warmer SSTs are investigated on a global scale using the superparameterized (SP) Community Atmosphere Model (CAM), in which a cloud-resolving model is embedded in each CAM grid column to simulate convection explicitly. Two 10-yr simulations have been performed using present climatological sea surface temperature (SST) and perturbed SST climatology derived from the representative concentration pathway 8.5 (RCP8.5) scenario. Compared with the conventional CAM, SP-CAM simulates colder temperatures and more realistic intensity distribution of precipitation, especially for heavy precipitation. The temperature and precipitation extremes have been defined by the 99th percentile of the 3-hourly data. For temperature, the changes in the warm and cold extremes are generally consistent between CAM and SP-CAM, with larger changes in warm extremes at low latitudes and larger changes in cold extremes at mid-to-high latitudes. For precipitation, CAM predicts a uniform increase of frequency of precipitation extremes regardless of the rain rate, while SP-CAM predicts a monotonic increase of frequency with increasing rain rate and larger change of intensity for heavier precipitation. The changes in 3-hourly and daily temperature extremes are found to be similar; however, the 3-hourly precipitation extremes have a significantly larger change than daily extremes. The Clausius–Clapeyron scaling is found to be a relatively good predictor of zonally averaged changes in precipitation extremes over midlatitudes but not as good over the tropics and subtropics. The changes in precipitable water and large-scale vertical velocity are equally important to explain the changes in precipitation extremes.


2014 ◽  
Vol 27 (15) ◽  
pp. 5941-5963 ◽  
Author(s):  
Xiang Gao ◽  
C. Adam Schlosser ◽  
Pingping Xie ◽  
Erwan Monier ◽  
Dara Entekhabi

Abstract An analogue method is presented to detect the occurrence of heavy precipitation events without relying on modeled precipitation. The approach is based on using composites to identify distinct large-scale atmospheric conditions associated with widespread heavy precipitation events across local scales. These composites, exemplified in the south-central, midwestern, and western United States, are derived through the analysis of 27-yr (1979–2005) Climate Prediction Center (CPC) gridded station data and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). Circulation features and moisture plumes associated with heavy precipitation events are examined. The analogues are evaluated against the relevant daily meteorological fields from the MERRA reanalysis and achieve a success rate of around 80% in detecting observed heavy events within one or two days. The method also captures the observed interannual variations of seasonal heavy events with higher correlation and smaller RMSE than MERRA precipitation. When applied to the same 27-yr twentieth-century climate model simulations from Phase 5 of the Coupled Model Intercomparison Project (CMIP5), the analogue method produces a more consistent and less uncertain number of seasonal heavy precipitation events with observation as opposed to using model-simulated precipitation. The analogue method also performs better than model-based precipitation in characterizing the statistics (minimum, lower and upper quartile, median, and maximum) of year-to-year seasonal heavy precipitation days. These results indicate the capability of CMIP5 models to realistically simulate large-scale atmospheric conditions associated with widespread local-scale heavy precipitation events with a credible frequency. Overall, the presented analyses highlight the improved diagnoses of the analogue method against an evaluation that considers modeled precipitation alone to assess heavy precipitation frequency.


2017 ◽  
Vol 30 (7) ◽  
pp. 2501-2521 ◽  
Author(s):  
Xiang Gao ◽  
C. Adam Schlosser ◽  
Paul A. O’Gorman ◽  
Erwan Monier ◽  
Dara Entekhabi

Precipitation-gauge observations and atmospheric reanalysis are combined to develop an analogue method for detecting heavy precipitation events based on prevailing large-scale atmospheric conditions. Combinations of atmospheric variables for circulation (geopotential height and wind vector) and moisture (surface specific humidity, column and up to 500-hPa precipitable water) are examined to construct analogue schemes for the winter [December–February (DJF)] of the “Pacific Coast California” (PCCA) region and the summer [June–August (JJA)] of the Midwestern United States (MWST). The detection diagnostics of analogue schemes are calibrated with 1979–2005 and validated with 2006–14 NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA). All analogue schemes are found to significantly improve upon MERRA precipitation in characterizing the occurrence and interannual variations of observed heavy precipitation events in the MWST. When evaluated with the late twentieth-century climate model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), all analogue schemes produce model medians of heavy precipitation frequency that are more consistent with observations and have smaller intermodel discrepancies than model-based precipitation. Under the representative concentration pathways (RCP) 4.5 and 8.5 scenarios, the CMIP5-based analogue schemes produce trends in heavy precipitation occurrence through the twenty-first century that are consistent with model-based precipitation, but with smaller intermodel disparity. The median trends in heavy precipitation frequency are positive for DJF over PCCA but are slightly negative for JJA over MWST. Overall, the analyses highlight the potential of the analogue as a powerful diagnostic tool for model deficiencies and its complementarity to an evaluation of heavy precipitation frequency based on model precipitation alone.


2018 ◽  
Vol 19 (1) ◽  
pp. 69-85 ◽  
Author(s):  
Veljko Petković ◽  
Christian D. Kummerow ◽  
David L. Randel ◽  
Jeffrey R. Pierce ◽  
John K. Kodros

Abstract Prominent achievements made in addressing global precipitation using satellite passive microwave retrievals are often overshadowed by their performance at finer spatial and temporal scales, where large variability in cloud morphology poses an obstacle for accurate precipitation measurements. This is especially true over land, with precipitation estimates being based on an observed mean relationship between high-frequency (e.g., 89 GHz) brightness temperature depression (i.e., the ice-scattering signature) and surface precipitation rate. This indirect relationship between the observed (brightness temperatures) and state (precipitation) vectors often leads to inaccurate estimates, with more pronounced biases (e.g., −30% over the United States) observed during extreme events. This study seeks to mitigate these errors by employing previously established relationships between cloud structures and large-scale environments such as CAPE, wind shear, humidity distribution, and aerosol concentrations to form a stronger relationship between precipitation and the scattering signal. The GPM passive microwave operational precipitation retrieval (GPROF) for the GMI sensor is modified to offer additional information on atmospheric conditions to its Bayesian-based algorithm. The modified algorithm is allowed to use the large-scale environment to filter out a priori states that do not match the general synoptic condition relevant to the observation and thus reduces the difference between the assumed and observed variability in the ice-to-rain ratio. Using the ground Multi-Radar Multi-Sensor (MRMS) network over the United States, the results demonstrate outstanding potential in improving the accuracy of heavy precipitation over land. It is found that individual synoptic parameters can remove 20%–30% of existing bias and up to 50% when combined, while preserving the overall performance of the algorithm.


2016 ◽  
Vol 144 (12) ◽  
pp. 4687-4707 ◽  
Author(s):  
Lukas Umek ◽  
Alexander Gohm

Abstract This is one of the first case studies of a snowstorm at Lake Constance, located between Austria, Germany, and Switzerland, which assesses the influence of the lake and the orography on the generation of heavy precipitation. The analysis is based on surface and radar observations and numerical simulations with the Weather Research and Forecasting (WRF) Model. On 8 February 2013, a rather stationary and banded radar reflectivity pattern was observed during postfrontal conditions with northwesterly flow. The associated snowband affected the downstream shore and the adjacent mountainous region with 36 mm of precipitation within 5 h at the shore. Surface observations show a convergence in the wind field over the lake during the period of banded precipitation. The control simulation captures the formation of a convergence line and a snowband near the shoreline and over the downstream orography. A lake-induced, low-level conditionally unstable layer is essential for the snowband formation. Orographically and thermally induced convergence provides the lifting to release conditional instability and to trigger convection. Orographic enhancement of precipitation occurs downstream of the lake. Sensitivity experiments with modified orography, land use, and lake surface temperature show that the lake is a crucial factor controlling the amount and distribution of snowfall. However, neither the lake nor the orography alone would have been able to form a snowband. This study highlights the complex interaction between lake and orographic effects and shows that Lake Constance is large enough to impact the formation of precipitation.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 827
Author(s):  
Flavio T. Couto ◽  
Rui Salgado ◽  
Nuno Guiomar

Understanding the effects of weather and topography on fire spread in specific contexts, such as oceanic islands, is critical for supporting fire prevention and suppression strategies. In this study, we analyse the atmospheric conditions associated with historical forest fires that have occurred over complex terrain in Madeira Island, Portugal. The atmospheric Meso-NH model was used to identify the mesoscale environment during three forest fires events. The model was configured into two nested horizontal domains, the outer domain at 2.5 km resolution and the inner domain at 500 m. The paper brings a comprehensive analysis on the factors favouring the evolution of significant large fires occurring in Madeira Island in August 2010, July 2012 and August 2016. These fire events were selected because they are characterized by their large size (between 324.99 ha and 7691.67 ha) that expanded in a short-time period, threatening people and property in the wildland-urban interfaces. The study highlights that local terrain produce orographic effects that enhance the fire danger over the southern slope during typical summer atmospheric conditions.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1815
Author(s):  
Jan Boeckhaus ◽  
Oliver Gross

Hereditary diseases of the glomerular filtration barrier are characterized by a more vulnerable glomerular basement membrane and dysfunctional podocytes. Recent clinical trials have demonstrated the nephroprotective effect of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in chronic kidney disease (CKD). SGLT2-mediated afferent arteriole vasoconstriction is hypothesized to correct the hemodynamic overload of the glomerular filtration barrier in hereditary podocytopathies. To test this hypothesis, we report data in a case series of patients with Alport syndrome and focal segmental glomerulosclerosis (FSGS) with respect of the early effect of SGLT2i on the kidney function. Mean duration of treatment was 4.5 (±2.9) months. Mean serum creatinine before and after SGLT-2i initiation was 1.46 (±0.42) and 1.58 (±0.55) mg/dL, respectively, with a median estimated glomerular filtration rate of 64 (±27) before and 64 (±32) mL/min/1.73 m2 after initiation of SGLT2i. Mean urinary albumin-creatinine ratio in mg/g creatinine before SGLT-2i initiation was 1827 (±1560) and decreased by almost 40% to 1127 (±854) after SGLT2i initiation. To our knowledge, this is the first case series on the effect and safety of SGLT2i in patients with hereditary podocytopathies. Specific large-scale trials in podocytopathies are needed to confirm our findings in this population with a tremendous unmet medical need for more effective, early on, and safe nephroprotective therapies.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katrina Nilsson-Kerr ◽  
Pallavi Anand ◽  
Philip B. Holden ◽  
Steven C. Clemens ◽  
Melanie J. Leng

AbstractMost of Earth’s rain falls in the tropics, often in highly seasonal monsoon rains, which are thought to be coupled to the inter-hemispheric migrations of the Inter-Tropical Convergence Zone in response to the seasonal cycle of insolation. Yet characterization of tropical rainfall behaviour in the geologic past is poor. Here we combine new and existing hydroclimate records from six large-scale tropical regions with fully independent model-based rainfall reconstructions across the last interval of sustained warmth and ensuing climate cooling between 130 to 70 thousand years ago (Marine Isotope Stage 5). Our data-model approach reveals large-scale heterogeneous rainfall patterns in response to changes in climate. We note pervasive dipole-like tropical precipitation patterns, as well as different loci of precipitation throughout Marine Isotope Stage 5 than recorded in the Holocene. These rainfall patterns cannot be solely attributed to meridional shifts in the Inter-Tropical Convergence Zone.


2016 ◽  
Vol 29 (14) ◽  
pp. 5281-5297 ◽  
Author(s):  
Who M. Kim ◽  
Stephen Yeager ◽  
Ping Chang ◽  
Gokhan Danabasoglu

Abstract Deep convection in the Labrador Sea (LS) resumed in the winter of 2007/08 under a moderately positive North Atlantic Oscillation (NAO) state. This is in sharp contrast with the previous winter with weak convection, despite a similar positive NAO state. This disparity is explored here by analyzing reanalysis data and forced-ocean simulations. It is found that the difference in deep convection is primarily due to differences in large-scale atmospheric conditions that are not accounted for by the conventional NAO definition. Specifically, the 2007/08 winter was characterized by an atmospheric circulation anomaly centered in the western North Atlantic, rather than the eastern North Atlantic that the conventional NAO emphasizes. This anomalous circulation was also accompanied by anomalously cold conditions over northern North America. The controlling influence of these atmospheric conditions on LS deep convection in the 2008 winter is confirmed by sensitivity experiments where surface forcing and/or initial conditions are modified. An extended analysis for the 1949–2009 period shows that about half of the winters with strong heat losses in the LS are associated with such a west-centered circulation anomaly and cold conditions over northern North America. These are found to be accompanied by La Niña–like conditions in the tropical Pacific, suggesting that the atmospheric response to La Niña may have a strong influence on LS deep convection.


Sign in / Sign up

Export Citation Format

Share Document