Gradient Boosting for Forecasting Groundwater Levels from Sparse Data Sets in an Alluvial Aquifer Subjected to Heavy Pumping and Flooding

Author(s):  
Shuang Xiao ◽  
Dioni Cendón ◽  
Bryce Kelly

<p>In most catchments, there is usually inadequate information to build an accurate three-dimensional representation of the sediment type and associated hydraulic properties. This makes it challenging to build a physics-based groundwater flow model that accurately replicates measured fluctuations in the groundwater level, and it also results in considerable uncertainty in forecasting the groundwater level under various climate scenarios. However, in many catchments in Australia, and around the world, there are 100 year-long rainfall and streamflow records. Good groundwater level data sets often date from mid last century, when advances in pumping technology enable high volume groundwater extractions to support irrigated agriculture. For the lower Murrumbidgee alluvial aquifer in Australia, which covers an area of 33,000 km<sup>2</sup>, we demonstrate that it is possible to train the gradient boosting algorithm to predict the annual change in the groundwater level to within a few centimetres.</p><p>The lower Murrumbidgee aquifer, which is up to 300 m thick, is an important but highly stressed aquifer system in Australia. Annually the groundwater level fluctuates many metres due to groundwater withdrawals and occasional flooding.  Some portions of the alluvial aquifer are unconfined and other portions semi-confined. Under current groundwater pumping conditions, groundwater levels decline in the semi-confined portions of the aquifer during extended periods of below average rainfall. In other portions of the catchment, there have been periods of groundwater level rise due to deep drainage beneath irrigated crops.</p><p>Despite the catchment size, groundwater levels throughout the region are driven by four primary processes: ongoing river leakage, pumping, deep drainage and occasional flooding. Combined with knowledge of the hydrogeological setting, we successfully used just rainfall, streamflow and annual groundwater withdrawal records to build a gradient boosting model to predict where the groundwater level will rise and fall, in both space and time. Under existing annual pumping rates, the gradient boosting model forecasts that the groundwater level will fall many metres if the catchment has a period of below average rainfall as occurred from 1917 to 1949. This fall in the groundwater level will trigger groundwater access restrictions in some portions of the aquifer.</p>

Author(s):  
Soo-Hyoung Lee ◽  
Jae Min Lee ◽  
Sang-Ho Moon ◽  
Kyoochul Ha ◽  
Yongcheol Kim ◽  
...  

AbstractHydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.


2019 ◽  
Vol 44 (1) ◽  
pp. 94-119 ◽  
Author(s):  
Wout M van Dijk ◽  
Alexander L Densmore ◽  
Christopher R Jackson ◽  
Jonathan D Mackay ◽  
Suneel K Joshi ◽  
...  

Unsustainable exploitation of groundwater in northwestern India has led to extreme but spatially variable depletion of the alluvial aquifer system in the region. Mitigation and management of groundwater resources require an understanding of the drivers behind the pattern and magnitude of groundwater depletion, but a regional perspective on these drivers has been lacking. The objectives of this study are to (1) understand the extent to which the observed pattern of groundwater level change can be explained by the drivers of precipitation, potential evapotranspiration, abstraction, and canal irrigation, and (2) understand how the impacts of these drivers may vary depending on the underlying geological heterogeneity of the system. We used a transfer function-noise (TFN) time series approach to quantify the effect of the various driver components in the period 1974–2010, based on predefined impulse response functions ( θ). The dynamic response to abstraction, summarized by the zeroth moment of the response M0, is spatially variable but is generally large across the proximal and middle parts of the study area, particularly where abstraction is high but alluvial aquifer bodies are less abundant. In contrast, the precipitation response is rapid and fairly uniform across the study area. At larger distances from the Himalayan front, observed groundwater level rise can be explained predominantly by canal irrigation. We conclude that the geological heterogeneity of the aquifer system, which is imposed by the geomorphic setting, affects the response of the aquifer system to the imposed drivers. This heterogeneity thus provides a useful framework that can guide mitigation efforts; for example, efforts to decrease abstraction rates should be focused on areas with thinner and less abundant aquifer bodies.


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Rubens Oliveira da Cunha Júnior ◽  
João Victor Mariano da Silva

Climate and hydrogeological conditions of the Brazilian semi-arid demand sustainable and efficient water solutions. Groundwater monitoring programs are tools to subsidize the decision-making in this sense. In Ceará state, the monitoring of Araripe sedimentary basin aquifers is important for the development of the region. In this scenario, the present work aimed to study the groundwater level through an exploratory analysis of time series. The study area covered the eastern portion of the Araripe sedimentary basin, in the municipality of Milagres, in Ceará state. As the object of this study, it was obtained the time series of monthly average groundwater levels in a monitoring well of RIMAS/CPRM and installed in the Middle Aquifer System. Graphical and numerical methods were applied for the identification and description of time series main characteristics. Precipitation data in the study area were used to evaluate the system recharge. Results were discussed according to the environmental aspects of the study area. As a result, it was possible the identification and description of time series patterns such as trend and seasonality through the applied methods. It is also highlighted the sharp drawdown of groundwater levels in long term in the time series, reflecting the quantitative state of the aquifer system, as well as the groundwater recharge during the rainy season of the region, evidenced by the study of time series seasonality together with the precipitation data..


2020 ◽  
Vol 11 (3) ◽  
pp. 125
Author(s):  
Arini Dian ◽  
Nana Sulaksana ◽  
A. Asseggaf

ABSTRAKKebutuhan air bersih di Jakarta sangat meningkat sehingga pemerintah daerah mulai melakukan pengamatan muka airtanah. Penelitian ini dilakukan dengan menganalisis fluktuasi muka airtanah pada AWLR, intensitas curah hujan, dan penampang bawah permukaan pada beberapa buah titik logbor selama tahun 2003 - 2013 di wilayah Jakarta Selatan. Jumlah curah hujan di daerah penelitian berkisar antara 0,2 - 831,4 mm/bulan. Dari data AWLR dapat diketahui ketinggian muka airtanah berkisar antara 9,29 - 13,97 m aml, terdangkal terjadi pada bulan Oktober - Febuari (ketika musim penghujan) dan ketinggian muka airtanah terdalam berkisar antara14,60 - 20,41 m aml terjadi pada bulan Maret - September (ketika musim kemarau). Penelitian ini dilakukan untuk mengidentifikasi adanya pengaruh hubungan curah hujan dan muka airtanah dengan karakteristik sistem akuifer yang berada pada daerah penelitian sekitarnya khususnya di Jakarta Selatan. Berdasarkan analisis tenggang waktu dan fluktuasi muka airtanah yang dipengaruhi oleh intensitas curah hujan.Serta adanya lapisan akuitar pada penampang geologi dan posisi muka airtanah yang terdapat dibagian atas lapisan akuifer, maka dapat dikatakan bahwa sistem akuifer yang terdapat di daerah penelitian bersifat semi tertekan. Sistem akuifer tersebut pada bagian atasnya merupakan material berbutir halus (akuitar) sehingga airtanah masih memungkinkan untuk bergerak di dalamnya.Kata kunci: airtanah, AWLR, curah hujan, fluktuasi, JakartaABSTRACTThe need for clean water in Jakarta has increased significantly, so the groundwater levels of Jakarta Groundwater Basin need to be researched. This research was conducted by analyzing the fluctuation of the groundwater level using the AWLR data, rainfall intensity, and subsurface sections to several logbor during the year of 2003 - 2013 in South Jakarta area. Rainfall event in the area is in range of 0.2 mm/year up to 831.4 mm/year. From the AWLR data, the highest groundwater level were at 9.29 - 13.97 masl in October - Febuari (during rainy season) and the deepest groundwater level were at 14.60 - 20.41 masl) in March - September (during dry season). Based on the analysis of the timescale and the groundwater level fluctuations that influenced by rainfall, and the aquitard layer in the geology section, and groundwater level exist above the aquifer, so that the aquifer system in this regions is classified as semi depressed aquifer. In this aquifer system, the underlying material is fine grained (aquitard) that allows groundwater moving inside the layer.Keywords: groundwater, AWLR, rainfall, fluctuation, Jakarta


Author(s):  
Kui Sun ◽  
Limin Fan ◽  
Yucheng Xia ◽  
Cheng Li ◽  
Jianping Chen ◽  
...  

Abstract Groundwater of Luohe Formation is the main water source for industrial and agricultural and residential use in Binchang mining area, which is one of the key elements to water conservation coal mining. However, few studies are available to document the enrichment characteristics and influence of underground coal mining on groundwater for the Luohe Formation. This study evaluates the changes of groundwater levels and spring flow caused by mining activities to explore the influence mechanism of coal mining on groundwater by comparatively analysing existing mining data and survey data combined with a series of mapping methods. The results show that the aquifer of Luohe Formation are gradually thinning south-eastwards, disappeared at the mining boundary. In the vertical direction, the lithological structure is distinct, due to alternative sedimentation of meandering river facies and braided river facies. According to the yielding property, the aquifer is divided into three sections, namely, strong water-rich section, medium water-rich section, and weak water-rich section, which are located in northwest and central part, southwest, and the rest part of the mining area, respectively. Mining of Tingnan Coal Mine since 2004 has caused a 3.16 to 194.87 meters drop in groundwater level of Luohe Formation. Until 2015, 70.10% of the mining area undergoes a groundwater level drop larger than 10.00 meters. Another influence of underground mining is that the total flow from 34 springs in 8 southern coal mines of the area has decreased by 286.48 L/s with a rate of decrease at 46.95% from 2007 to 2017. The areas that groundwater level falls or spring flow declines are manly located in the mine gob areas. Results also indicate that the ratio of the height of water conducted fracture zone to the mining height in Binchang mining area is between 16.85 and 27.92. This may increase ground water flow in vertical direction, causing a water level in the aquifer system to drop and ultimately decreasing the flow from the springs. The research results will provide data and theoretical support for the protection of groundwater resources and water conservation coal mining of Luohe Formation in Binchang mining area.


2009 ◽  
Vol 46 (11) ◽  
pp. 841-854 ◽  
Author(s):  
Christine Rivard ◽  
Harold Vigneault ◽  
Andrew R. Piggott ◽  
Marie Larocque ◽  
François Anctil

Groundwater plays a major role in social and economic development and in human and ecosystem health. However, little is known about the potential impacts of climate change on this resource in Canada, namely if groundwater recharge is increasing or decreasing over time. This paper focuses on trend statistical analysis of historical series of baseflow and groundwater levels and their field significance as indicators of recharge. Monitoring wells are mainly located in the southern half of western Canada, where few gauging stations either are available or provide significant trends. Both data sets are thus complementary. Results show that most available groundwater level series have significant trends (80%), whereas most available baseflow series have not (3%–33%). However, groundwater level series usually show smaller slope magnitudes than baseflow series. Mixed trends are often observed across Canada for a given variable, period, or series length, although some regions can have marked trends. For instance, values below the 55°N latitude, and especially values in Atlantic Canada, show mostly downward trends (decreasing recharge). Values north of the 55° parallel often show upward trends. All groundwater level results are field significant at the 10% level, versus only 35% for baseflow results, but they show mixed results. Baseflow values show a majority of downward trends for annual values and the summer period for 40- and 50-year series, thus showing field significance, whereas mixed results are observed for 30-year series and the spring, fall, and winter seasons.


Author(s):  
Michelle Sneed ◽  
Justin T. Brandt

Abstract. Groundwater has been a major source of agricultural, municipal, and domestic water supply since the early 1920s in the Coachella Valley, California, USA. Land subsidence, resulting from aquifer-system compaction and groundwater-level declines, has been a concern of the Coachella Valley Water District (CVWD) since the mid-1990s. As a result, the CVWD has implemented several projects to address groundwater overdraft that fall under three categories – groundwater substitution, conservation, and managed aquifer-recharge (MAR). The implementation of three projects in particular – replacing groundwater extraction with surface water from the Colorado River and recycled water (Mid-Valley Pipeline project), reducing water usage by tiered-rate costs, and increasing groundwater recharge at the Thomas E. Levy Groundwater Replenishment Facility – are potentially linked to markedly improved groundwater levels and subsidence conditions, including in some of the historically most overdrafted areas in the southern Coachella Valley. Groundwater-level and subsidence monitoring have tracked the effect these projects have had on the aquifer system. Prior to about 2010, water levels persistently declined, and some had reached historically low levels by 2010. Since about 2010, however, groundwater levels have stabilized or partially recovered, and subsidence has stopped or slowed substantially almost everywhere it previously had been observed; uplift was observed in some areas. Furthermore, results of Interferometric Synthetic Aperture Radar analyses for 1995–2017 indicate that as much as about 0.6 m of subsidence occurred; nearly all of which occurred prior to 2010. Continued monitoring of water levels and subsidence is necessary to inform the CVWD about future mitigation measures. The water management strategies implemented by the CVWD can inform managers of other overdrafted and subsidence-prone basins as they seek solutions to reduce overdraft and subsidence.


2013 ◽  
Vol 64 (12) ◽  
pp. 1141 ◽  
Author(s):  
B. F. J. Kelly ◽  
W. A. Timms ◽  
M. S. Andersen ◽  
A. M. McCallum ◽  
R. S. Blakers ◽  
...  

Groundwater is an important contributor to irrigation water supplies. The time lag between withdrawal and the subsequent impacts on the river corridor presents a challenge for water management. We highlight aspects of this challenge by examining trends in the groundwater levels and changes in groundwater management goals for the Namoi Catchment, which is within the Murray–Darling Basin, Australia. The first high-volume irrigation bore was installed in the cotton-growing districts in the Namoi Catchment in 1966. The development of high-yielding bores made accessible a vast new water supply, enabling cotton growers to buffer the droughts. Prior to the development of a groundwater resource it is difficult to accurately predict how the water at the point of withdrawal is hydraulically connected to recharge zones and nearby surface-water features. This is due to the heterogeneity of the sediments from which the water is withdrawn. It can take years or decades for the impact of groundwater withdrawal to be transmitted kilometres through the aquifer system. We present the analysis of both historical and new groundwater level and streamflow data to quantify the impacts of extensive groundwater withdrawals on the watertable, hydraulic gradients within the semi-confined aquifers, and the movement of water between rivers and aquifers. The results highlight the need to monitor the impacts of irrigated agriculture at both the regional and local scales, and the need for additional research on how to optimise the conjunctive use of both surface-water and groundwater to sustain irrigated agriculture while minimising the impact on groundwater-dependent ecosystems.


2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


Sign in / Sign up

Export Citation Format

Share Document