The integrated stress-strain analysis of calcite twins: Consistent stress and strain determined from natural data

Author(s):  
Kei Wakamori ◽  
Atsushi Yamaji

<p>Stress and strain are different physical entities. Do the stress and strain determined from <em>e</em>-twins in a sample of polycrystalline calcite have similar principal orientations and similar shape ratios? Köpping et al. (2019) tackled this question by applying Turner’s (1953) classical method of paleostress analysis to natural data. However, despite the assumption of the method, the orientations of P- and T-axes of an <em>e</em>-twin lamella do not have a one-to-one correspondence with the principal orientations of the stress that formed the lamella. And, the method cannot determine a shape ratio. Another difficulty arises when one tackles the question: Natural calcite has usually been subjected to polyphase tectonics with different stress conditions. One has to separate stresses and to evaluate corresponding strains from a sample. Once lamellae are grouped according to the stresses, the strain achieved by the formation of a group of twin lamellae is easily evaluated by the method of Conel (1962) if the total strain represented by a group is small.</p><p>The present authors tackled the question by combining Conel’s strain analysis method with a novel method of paleostress analysis of mechanical twins, which clusters the directional data of <em>e</em>-twins by means of a statistical mixture model and determines stresses for each group of data. And, the appropriate number of stresses is determined by means of Bayesian information criterion. The method also determines the probabilities of each lamella to be formed by the stresses, which are called the memberships of the lamella. The strain achieved under a stress condition can be computed using the memberships. We applied this integrated stress-strain analysis method to Data Sets I and II from two calcite veins in a Miocene forearc basin deposit in central Japan. Since the sampling area was close to a triple-trench junction, the young formation has experienced polyphase tectonics.</p><p>As a result, we obtained the consistent stress and strains from both of the data sets. Three stresses were obtained from Data Set I, and the corresponding strains were 0.17, 0.25 and 0.13%. Two stresses were obtained from Data Set II, and the strains were 0.39 and 0.42%. The stress and strain determined from the data sets for each deformation phase were consistent with each other. That is, the principal axes had difference as small as < 20 degrees, and the shape ratios of stress and strain had also similar values. It is not straightforward to generalize this result, but both the stress and strain analyses seem to give appropriate results, providing that polyphase deformations are coped with.</p>

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1690
Author(s):  
Teague Tomesh ◽  
Pranav Gokhale ◽  
Eric R. Anschuetz ◽  
Frederic T. Chong

Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 209
Author(s):  
Gabriel D. Gwanmesia ◽  
Matthew L. Whitaker ◽  
Lidong Dai ◽  
Alwin James ◽  
Haiyan Chen ◽  
...  

We measured the elastic velocities of a synthetic polycrystalline β-Mg2SiO4 containing 0.73 wt.% H2O to 10 GPa and 600 K using ultrasonic interferometry combined with synchrotron X-radiation. Third-order Eulerian finite strain analysis of the high P and T data set yielded Kso = 161.5(2) GPa, Go = 101.6(1) GPa, and (∂Ks/∂P)T = 4.84(4), (∂G/∂P)T = 1.68(2) indistinguishable from Kso = 161.1(3) GPa, Go = 101.4(1) GPa, and (∂Ks/∂P)T = 4.93(4), (∂G/∂P)T = 1.73(2) from the linear fit. The hydration of the wadsleyite by 0.73 wt.% decreases Ks and G moduli by 5.3% and 8.6%, respectively, but no measurable effect was noted for (∂Ks/∂P)T and (∂G/∂P)T. The temperature derivatives of the Ks and G moduli from the finite strain analysis (∂KS/∂T)P = −0.013(2) GPaK−1, (∂G/∂T)P = −0.015(0.4) GPaK−1, and the linear fit (∂KS/∂T)P = −0.015(1) GPaK−1, (∂G/∂T)P = −0.016(1) GPaK−1 are in agreement, and both data sets indicating the |(∂G/∂T)P| to be greater than |(∂KS/∂T)P|. Calculations yield ∆Vp(α-β) = 9.88% and ∆VS(α-β) = 8.70% for the hydrous β-Mg2SiO4 and hydrous α-Mg2SiO4, implying 46–52% olivine volume content in the Earth’s mantle to satisfy the seismic velocity contrast ∆Vs = ∆VP = 4.6% at the 410 km depth.


2012 ◽  
Vol 557-559 ◽  
pp. 300-303
Author(s):  
Cheng Hong Duan ◽  
Xiang Peng Luo ◽  
Nan Zhang

In this paper, a finite element model of a composite gas cylinder was established by ABAQUS finite element software, with consideration that both heads were helically wound and their wound angle and wound thickness varied with different parallel circle radius. Stress of the composite gas cylinder and PEEQ of its liner under different working conditions after autofrettage treatment were studied, the stress distribution was assessed by the DOT CFFC standard and the effective range of autofrettage treatment was confirmed. This finite element analysis method may be referable to the design and inspection of composite gas cylinders.


2006 ◽  
Vol 113 ◽  
pp. 565-570
Author(s):  
D. Zabulionis

This article deals with the stress and strain state of a three–layer composite material with interlayer slip subjected to hygrothermal loading. The exact solutions in an explicit function form that allows one to determine the stress-strain state and deflection of three–layer composite subjected to hygrothermal loading and by taking this into consideration the interlayer slip is proposed.


2007 ◽  
Vol 13 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Neringa Verveckaite ◽  
Jonas Amsiejus ◽  
Vincentas Stragys

During the determination of soil strength and compressibility in a laboratory by different apparatus soil is loaded in a different way. It has an influence on stress‐strain distribution in a sample. Some factors are not evaluated during the results interpretation, for example, friction between soil and device metal parts. The finite‐element method analysis also shows that during triaxial, oedometer, shear box tests distribution of stress and strain in the sample is non‐uniform. A special apparatus was designed and used for determining horizontal component of stress in the cross‐section of the sample. It was determined for sands that horizontal component of stress in the cross‐section centre is significantly smaller than at the edges. Increasing load plastic deformations are developing not in the whole sample but in particular places. If we know a real distribution of stress and strain in the sample, it is possible to determine the soil strength and deformation parameters in a more precise way or to rate the influence of different factors on soil properties.


2010 ◽  
Vol 37-38 ◽  
pp. 1561-1566
Author(s):  
Xue Dao Shu ◽  
Min Xiao ◽  
Chuan Min Li ◽  
Zheng Huan Hu

The broadening stage is the main stage in Multi-wedge Synchrostep Rolling railway axle by Cross-wedge Rolling. Based on the rotated theory of Multi-wedge Rolling, through using Ansys/Ls-Dyna FEM software, This paper provides a systematic analysis of the stress-strain in the broadening stage of Multi-wedge Synchrostep Rolling railway axle by Cross-wedge Rolling. Through this study, it is obtained the stress-strain distribution and evolution on Multi-wedge Synchrostep Rolling railway axle by Cross-wedge Rolling. These research conclusions can provide scientific basis for Multi-wedge Synchrostep Rolling railway axle by Cross-wedge Rolling.


2013 ◽  
Vol 676 ◽  
pp. 145-148
Author(s):  
Hong Ying Wang ◽  
Wei Guo

Carried on finite element analysis using the UG software to finally carry on the fatigue life’s computational method to carry on the exploration and the research. when carrying on the finite element stress strain analysis to the piston pin, used the different analysis method, because the piston pin’s quality is very slightly oppositeing to the piston quality, produces the force of inertia is very small, the counter stress computed result is not very obvious, therefore to piston pin finite element analysis we uses conventional algorithm that infliction boundary condition.


2012 ◽  
Vol 525-526 ◽  
pp. 429-432
Author(s):  
Chun Long Zhang ◽  
Biao Ding ◽  
Chang Sheng Ai ◽  
Feng Huang

Based on integral nonlinear viscoelastic constitutive relationship, stress-strain field was analyzed of composite propellant under cyclic temperature loads to ensure the stress-strain distribution and damageable locality. The simulation conditions were designed in the temperature range from-10 to 60 at three different rate-temperature. The results indicate that the stress and strain have the same trend of changing. Adhesive interphase is prone to failure because of the alternating stress.


2020 ◽  
Vol 498 (4) ◽  
pp. 5512-5516
Author(s):  
Sasha R Brownsberger ◽  
Christopher W Stubbs ◽  
Daniel M Scolnic

ABSTRACT Using the Pantheon data set of Type Ia supernovae, a recent publication (R20 in this work) reports a  2σ detection of oscillations in the expansion history of the Universe. The study conducted by R20 is wholly worthwhile. However, we demonstrate that there is a $\gt 10{{\ \rm per\ cent}}$ chance of statistical fluctuations in the Pantheon data producing a false oscillatory signal larger than the oscillatory signal that R20 report. Their results are a less than 2σ detection. Applying the R20 methodology to simulated Pantheon data, we determine that these oscillations could arise due to analysis artefacts. The uneven spacing of Type Ia supernovae in redshift space and the complicated analysis method of R20 impose a structured throughput function. When analysed with the R20 prescription, about $11{{\ \rm per\ cent}}$ of artificial ΛCDM data sets produce a stronger oscillatory signal than the actual Pantheon data. Our results underscore the importance of understanding the false ‘signals’ that can be introduced by complicated data analyses.


Sign in / Sign up

Export Citation Format

Share Document