Assessment of groundwater resource vulnerability to over-exploitation in a tropical, agricultural basin

Author(s):  
Okke Batelaan ◽  
Daniel Partington ◽  
Manh Hai Vu ◽  
Margaret Shanafield

<p>In many parts of the world, groundwater extraction for agriculture is strongly increasing, causing severe stress on groundwater resources and associated ecosystems. Understanding how groundwater flow systems support extractions is therefore essential. However, particularly in developing, rural, tropical regions, monitoring of groundwater levels, chemistry and extractions is poorly regulated, resulting in a lack of data. Hence, alternative approaches are necessary to develop best management practices in these groundwater basins. In this study, catchment-scale groundwater extraction is indirectly estimated by two “soft data” approaches: (1) using local knowledge through a qualitative field survey of groundwater level fluctuations and groundwater withdrawals; and (2) land-use/population data combined with local knowledge on cropping/water use practices. Spatially distributed recharge is simulated on the basis of a monthly water balance model, which requires widely available topographic, soil, land-use and meteorological data. Extractions and recharge force a simple, basin-scale groundwater model for assessment of impact of irrigation practices. Agricultural scenarios are developed and modelling procedures are designed to test the temporal and spatial vulnerability over a 100 yr time span of the groundwater resource. The approaches are tested and applied for the agricultural La Vi River basin, Vietnam, where the livelihood of the local farmers requires development of new agricultural and hydrological techniques. The typical cash-crops are cultivated on sandy soils and irrigated in the dry season from thousands of private shallow wells. The tropical climate and strong seasonal rainfall pattern produces a strong fluctuation in groundwater levels. The modelling shows significant spatio-temporal unmet pumping demand dependent on the agricultural development scenario, indicating the need and opportunity for planning of groundwater based irrigation development. Overall, the multi-method comprehensive approach supports basin-scale sustainable groundwater resource development and only requires relatively easily accessible data.</p>

1993 ◽  
Vol 28 (3-5) ◽  
pp. 379-387 ◽  
Author(s):  
S. Mostaghimi ◽  
P. W. McClellan ◽  
R. A. Cooke

The Nomini Creek Watershed/Water Quality monitoring project was initiated in 1985, as part of the Chesapeake Bay Agreement of 1983, to quantify the impacts of agricultural best management practices (BMPs) on improving water quality. The watershed monitoring system was designed to provide a comprehensive assessment of the quality of surface and groundwater as influenced by changes in land use, agronomic, and cultural practices in the watershed over the duration of the project. The primary chemical characteristics monitored include both soluble and sediment-bound nutrients and pesticides in surface and groundwater. Water samples from 8 monitoring wells located in agricultural areas in the watershed were analyzed for 22 pesticides. A total of 20 pesticides have been detected in water samples collected. Atrazine is the most frequently detected pesticide. Detected concentrations of atrazine ranged from 0.03 - 25.56 ppb and occurred in about 26 percent of the samples. Other pesticides were detected at frequencies ranging from 1.6 to 14.2 percent of all samples collected and concentrations between 0.01 and 41.89 ppb. The observed concentrations and spatial distributions of pesticide contamination of groundwater are compared to land use and cropping patterns. Results indicate that BMPs are quite effective in reducing pesticide concentrations in groundwater.


1999 ◽  
Vol 3 (3) ◽  
pp. 353-361 ◽  
Author(s):  
J. A. Butterworth ◽  
R. E. Schulze ◽  
L. P. Simmonds ◽  
P. Moriarty ◽  
F. Mugabe

Abstract. To evaluate the effects of variations in rainfall on groundwater, long-term rainfall records were used to simulate groundwater levels over the period 1953-96 at an experimental catchment in south-east Zimbabwe. Two different modelling methods were adopted. Firstly, a soil water balance model (ACRU) simulated drainage from daily rainfall and evaporative demand; groundwater levels were predicted as a function of drainage, specific yield and water table height. Secondly, the cumulative rainfall departure method was used to model groundwater levels from monthly rainfall. Both methods simulated observed groundwater levels over the period 1992-96 successfully, and long-term simulated trends in historical levels were comparable. Results suggest that large perturbations in groundwater levels area a normal feature of the response of a shallow aquifer to variations in rainfall. Long-term trends in groundwater levels are apparent and reflect the effect of cycles in rainfall. Average end of dry season water levels were simulated to be almost 3 m higher in the late 1970s compared to those of the early 1990s. The simulated effect of prolonged low rainfall on groundwater levels was particularly severe during the period 1981-92 with a series of low recharge years unprecedented in the earlier record. More recently, above average rainfall has resulted in generally higher groundwater levels. The modelling methods described may be applied in the development of guidelines for groundwater schemes to help ensure safe long-term yields and to predict future stress on groundwater resources in low rainfall periods; they are being developed to evaluate the effects of land use and management change on groundwater resources.


2020 ◽  
Author(s):  
Andrea Critto ◽  
Hung Vuong Pham ◽  
Anna Sperotto ◽  
Silvia Torresan ◽  
Elisa Furlan ◽  
...  

<p>Freshwater ecosystems can be negatively affected by climate change and human interventions through the alteration of water supply and demand. There is an urgent need to protect the ecosystems, and the services they provide, to maintain their essential contribution to human wellbeing and economic prosperity, especially in a rapid and unpredictable global change context. In this work, we developed an integrated approach, coupling the outputs of ecosystem services (InVEST), climate (COSMO-CLM) and land use (LUISA) change models utilizing Bayesian Networks (BNs), to map freshwater-related Ecosystem Services (ESs), namely, water yield, nitrogen and phosphorus retention, and to assess their changes until 2050 under different management scenarios. First, InVEST was calibrated and validated with climate and land-use data to map and quantify ESs. Second, outputs of the ES model were integrated into the BN and the changes induced by different learning techniques and input settings were investigated. Finally, thousands of different scenarios were simulated testing multiple input variables configurations, thus allowing to describe the uncertainty of climate conditions, land-use change and water demand. Two types of inferences were conducted, namely, diagnostic and prognostic inference. The former permitted to find the best combination of the key drivers (i.e.  precipitation, land-use, and water demand) so that ESs are maximized while the latter concentrated on the quantification of ESs under different scenarios. This approach was applied and validated in the Taro River basin in Italy. The results show that the values of all the three types of ESs would decline in the medium-term period under most scenarios. Moreover, there would be a limit of space to improve those values, especially for nutrient retention services. The obtained results provide valuable support to identify and prioritize the best management practices for sustainable water use, balancing the tradeoffs among services. This analysis allows decision-makers to pick up one scenario with a specific configuration of land-use and water demand to optimize relevant ESs within their basin. Finally, these decisions are transformed into a “decision space” where the values of selected services are plotted in the space of ES to represent the gain/loss of each decision.</p>


2020 ◽  
Vol 61 (4) ◽  
pp. 313-327
Author(s):  
Akıner Ernur

The Büyük Melen river in the Melen Basin meets Istanbul's drinking water needs. Protecting the basin against nutrient pollution is vital in this regard as well. This study focuses on the best possible management practice (BMPs) in the Melen Basin to reduce the export of nutrients from the agricultural areas. A region comprising industrial, farming, and residential zones is the Melen basin. There is a forecast of global climate change in Turkey, and scientists and also governors must know which areas are no longer farming zones and which will be more appropriate for agriculture. Turkey's territory is a high-risk desertification area. In Melen Basin, the soil type and land use properties have been determined and mapped using GIS and Soil and Water Assessment Tool (SWAT). Buffer BMP filter strips can be used effectively for nutrient protection that can be carried from residential areas and motorways by runoff. The region in the basin is steep, and its clay and sandy soil structures are ideal for parallel terraces, grade stabilization, strip, and contour cultivation. Unless the ground can not retain or store water, the soil can undergo sudden floods, causing an erosion of the soil's productive surface layer. When we protect the land, this condition is reduced. The land type and land use mapping should be drawn up as soon as possible for the remaining Turkish basins by scientific methods. This research is intended to be an illustration for researches on other agricultural basins in Turkey and the world for this reason.


Land ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Philip Brown

Empirical studies of farm outcomes that rely on survey data often find important roles for education and gender. However, relatively few studies consider either field of study or gender of the decision maker (as opposed to gender of the survey respondent). This paper evaluates how the field of education and gender of decision makers correlate with profitability, farm management, future intentions, risk and norms, and adoption of novel technologies in New Zealand, explicitly accounting for the fact that many farming households make decisions jointly. Findings show that post-secondary education in a relevant field is a strong predictor of farm outcomes such as adoption of best management practices, plans to convert or intensify land use, risk tolerance, and adoption of novel technologies. Male sole decision makers (vis-à-vis joint decision makers) are more likely to have adopted best management practices and to have greater risk tolerance while female sole decision makers have adopted fewer novel technologies. These results have important implications for policy makers and extension officers who wish to encourage the uptake of best management practices and who wish to better understand future land-use change.


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 25
Author(s):  
Iolanda Borzì ◽  
Brunella Bonaccorso ◽  
Giuseppe Tito Aronica

Quantifying groundwater resources is important for effective water resource planning and management at the river basin scale, and it has to take into account all the natural and anthropogenic components of the water balance, i.e., rainfall and runoff processes, as well as mutual interactions between surface water and groundwater, but also artificial groundwater recharges (i.e., from irrigation) and groundwater extractions. In the present study, a reverse hydrogeological balance model was applied to estimate the active mean annual recharge of the northern Etna groundwater system within the Alcantara river basin in the Sicily region (Italy), based on precipitation, temperature, and potential evapotranspiration in the area. The main objective of this study was to quantify how the digital elevation model (DEM) resolution influences the groundwater resource estimation through the abovementioned methodology and how this is also influenced by the method for potential evapotranspiration assessment. Groundwater and surface flow for our case study have been evaluated for five different DEM resolutions (20, 60, 100, 300, 500 m) and with three different theoretical approaches for evapotranspiration calculation (Turc Method, Modified Turc Method, and Budyko Method). Results were validated against isochronous recorded data of river discharge at the Moio Alcantara cross-section and show how the reverse hydrogeological balance method shows better performance if implemented with the Budyko Method for estimating evapotranspiration and by using a DEM with a 60 × 60 m grid resolution.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 178
Author(s):  
Muhammad Aslam ◽  
Ali Salem ◽  
Vijay P. Singh ◽  
Muhammad Arshad

Evaluation of the spatial and temporal distribution of water balance components is required for efficient and sustainable management of groundwater resources, especially in semi-arid and data-poor areas. The Khadir canal sub-division, Chaj Doab, Pakistan, is a semi-arid area which has shallow aquifers which are being pumped by a plethora of wells with no effective monitoring. This study employed a monthly water balance model (water and energy transfer among soil, plants, and atmosphere)—WetSpass-M—to determine the groundwater balance components on annual, seasonal, and monthly time scales for a period of the last 20 years (2000–2019) in the Khadir canal sub-division. The spatial distribution of water balance components depends on soil texture, land use, groundwater level, slope, and meteorological conditions. Inputs for the model included data on topography, slope, soil, groundwater depth, slope, land use, and meteorological data (e.g., precipitation, air temperature, potential evapotranspiration, and wind speed) which were prepared using ArcGIS. The long-term average annual rainfall (455.7 mm) is distributed as 231 mm (51%) evapotranspiration, 109.1 mm (24%) surface runoff, and 115.6 mm (25%) groundwater recharge. About 51% of groundwater recharge occurs in summer, 18% in autumn, 14% in winter, and 17% in spring. Results showed that the WetSpass-M model properly simulated the water balance components of the Khadir canal sub-division. The WetSpass-M model’s findings can be used to develop a regional groundwater model for simulation of different aquifer management scenarios in the Khadir area, Pakistan.


2021 ◽  
Author(s):  
Susan Crow ◽  
Hannah Hubanks ◽  
Jonathan Deenik ◽  
Tai Maaz ◽  
Christine Tallamy Glazer ◽  
...  

Abstract Soil health conceptualized as a measurable ecosystem property provides a powerful tool for monitoring progress in restoration projects or implementation of best management practices to promote sustainable agroecosystems. We surveyed soils collected from a range of land uses (i.e., protected native and non-native forest, managed pasture, unmanaged previously intensive agricultural lands, organic cropland, and conventional cropland) across a range of soil orders (Oxisol, Mollisol, Andisol, Inceptisol, and Vertisol) on three Hawaiian Islands. Forty-six metrics associated with soil health and encompassing biological, chemical, and physical properties were measured. In this multivariate survey, the most distinct group was the unmanaged, previously intensive agriculture lands, which was significantly different from all other land uses regardless of mineralogy. Importantly, the soil health of well-managed pastures in Hawaiʻi was not different from protected forests, suggesting that well-managed grazing lands may be as healthy and resilient as protected forests. A suite of 11 readily measured parameters emerged out of a first-principle approach to determining a holistic indication of soil health across a range of soils and systems in Hawaiʻi encompassing much of the diversity in the tropics and subtropics. Every land use may improve its soil health status within a reasonable range of expectations for a soil’s land use history, current land use, and mineralogy. Key drivers of the measures for soil health, including intensive land use history, current land use practices, and mineralogy, must be interwoven into the soil health index, which should set minimum and maximum benchmarks and weight parameters according to equitable standards.


2013 ◽  
Vol 64 (5) ◽  
pp. 401 ◽  
Author(s):  
Robert J. Wilcock ◽  
Ross M. Monaghan ◽  
John M. Quinn ◽  
M. S. Srinivasan ◽  
David J. Houlbrooke ◽  
...  

Five streams in catchments with pastoral dairy farming as the dominant land use were monitored for periods of 7–16 years to detect changes in response to adoption of best management practices (BMPs). Stream water quality was degraded at the start with respect to N, P, suspended solids (SS) and E. coli concentrations, and was typical of catchments with intensive pastoral agriculture land use. Trend analysis showed a decrease in SS concentration for all streams, generally increasing water clarity, and lower E. coli concentrations in three of the streams. These are attributed to improved stream fencing (cattle exclusion) and greater use of irrigation for treated effluent disposal with less reliance on pond systems discharging to streams. Linkages between water quality and farm actions based on survey data were used to develop BMPs that were discussed at stakeholder workshops. Generic and specific BMPs were developed for the five catchments. The 3–7 year periodicity of major climate cycles, as well as market forces and a slow rate of farmer adoption of simple BMPs mean that monitoring programs in New Zealand need to be much longer than 10 years to detect changes caused by farmer actions. Long-term monitoring is also needed to detect responses to newly legislated requirements for improved water quality.


Sign in / Sign up

Export Citation Format

Share Document