Coherent changes in large-scale thermal structure and baroclinic life cycle of synoptic eddies in the Northern Hemisphere under global warming

Author(s):  
Pei-Chun Hsu ◽  
Huang-Hsiung Hsu

<p><strong>There is a growing concern that human-induced climate change has been affecting weather systems. However, robust observational evidences that confirm the links between global warming and synoptic phenomena at the global scale are lacking. Here we reveal robust covarying signals between poleward temperature gradient and baroclinic life cycle of synoptic (1-10 days) eddies under global warming. We note that the changes in temperature structure in Northern Hemisphere winter and summer in the past decades are different. In boreal winter, the tropospheric warming has been larger in tropical upper troposphere and around 30°N than for the midlatitude (30-60°N). This inhomogeneous warming resulted in the enhancement of poleward temperature gradient in the subtropical upper troposphere and in the lower midlatitude (30-45°N). We observed correlated increasing trends in the entire baroclinic life cycle of synoptic eddies</strong><strong> — </strong><strong>including eddy fluxes of heat and momentum, and zonal mean jet</strong><strong> — </strong><strong>associated with steepened poleward temperature gradients in these regions in the winter Northern Hemisphere over the past four decades. By contrast, in the summer Northern Hemisphere, the overall tropospheric warming over the mid- to high-latitude land areas has been accompanied by weakly reduced synoptic eddy activities and zonal mean flow. Our findings suggest that if greenhouse gas–induced warming continue to change the atmospheric thermal structure as projected in a warming climate, extratropical synoptic disturbances and large-scale circulations may change accordingly. </strong></p>

2019 ◽  
Vol 116 (10) ◽  
pp. 4105-4110 ◽  
Author(s):  
Charles G. Gertler ◽  
Paul A. O’Gorman

The circulation of the Northern Hemisphere extratropical troposphere has changed over recent decades, with marked decreases in extratropical cyclone activity and eddy kinetic energy (EKE) in summer and increases in the fraction of precipitation that is convective in all seasons. Decreasing EKE in summer is partly explained by a weakening meridional temperature gradient, but changes in vertical temperature gradients and increasing moisture also affect the mean available potential energy (MAPE), which is the energetic reservoir from which extratropical cyclones draw. Furthermore, the relation of changes in mean thermal structure and moisture to changes in convection associated with extratropical cyclones is poorly understood. Here we calculate trends in MAPE for the Northern extratropics in summer over the years 1979–2017, and we decompose MAPE into both convective and nonconvective components. Nonconvective MAPE decreased over this period, consistent with decreases in EKE and extratropical cyclone activity, but convective MAPE increased, implying an increase in the energy available to convection. Calculations with idealized atmospheres indicate that nonconvective and convective MAPE both increase with increasing mean surface temperature and decrease with decreasing meridional surface temperature gradient, but convective MAPE is relatively more sensitive to the increase in mean surface temperature. These results connect changes in the atmospheric mean state with changes in both large-scale and convective circulations, and they suggest that extratropical cyclones can weaken even as their associated convection becomes more energetic.


2011 ◽  
Vol 7 (4) ◽  
pp. 1169-1188 ◽  
Author(s):  
M. Krapp ◽  
J. H. Jungclaus

Abstract. We present simulations with a coupled atmosphere-ocean-biosphere model for the Middle Miocene 15 million years ago. The model is insofar more consistent than previous models because it captures the essential interactions between ocean and atmosphere and between atmosphere and vegetation. The Middle Miocene topography, which alters both large-scale ocean and atmospheric circulations, causes a global warming of 0.7 K compared to present day. Higher than present-day CO2 levels of 480 and 720 ppm cause a global warming of 2.8 and 4.9 K. The associated water vapour feedback enhances the greenhouse effect which leads to a polar amplification of the warming. These results suggest that higher than present-day CO2 levels are necessary to drive the warm Middle Miocene climate, also because the dynamic vegetation model simulates a denser vegetation which is in line with fossil records. However, we do not find a flatter than present-day equator-to-pole temperature gradient as has been suggested by marine and terrestrial proxies. Instead, a compensation between atmospheric and ocean heat transport counteracts the flattening of the temperature gradient. The acclaimed role of the large-scale ocean circulation in redistributing heat cannot be supported by our results. Including full ocean dynamics, therefore, does not solve the problem of the flat temperature gradient during the Middle Miocene.


2010 ◽  
Vol 181 (4) ◽  
pp. 377-390 ◽  
Author(s):  
Damien Bonté ◽  
Laurent Guillou-Frottier ◽  
Cynthia Garibaldi ◽  
Bernard Bourgine ◽  
Simon Lopez ◽  
...  

Abstract Assessment of the underground geothermal potential requires the knowledge of deep temperatures (1–5 km). Here, we present new temperature maps obtained from oil boreholes in the French sedimentary basins. Because of their origin, the data need to be corrected, and their local character necessitates spatial interpolation. Previous maps were obtained in the 1970s using empirical corrections and manual interpolation. In this study, we update the number of measurements by using values collected during the last thirty years, correct the temperatures for transient perturbations and carry out statistical analyses before modelling the 3D distribution of temperatures. This dataset provides 977 temperatures corrected for transient perturbations in 593 boreholes located in the French sedimentary basins. An average temperature gradient of 30.6°C/km is obtained for a representative surface temperature of 10°C. When surface temperature is not accounted for, deep measurements are best fitted with a temperature gradient of 25.7°C/km. We perform a geostatistical analysis on a residual temperature dataset (using a drift of 25.7°C/km) to constrain the 3D interpolation kriging procedure with horizontal and vertical models of variograms. The interpolated residual temperatures are added to the country-scale averaged drift in order to get a three dimensional thermal structure of the French sedimentary basins. The 3D thermal block enables us to extract isothermal surfaces and 2D sections (iso-depth maps and iso-longitude cross-sections). A number of anomalies with a limited depth and spatial extension have been identified, from shallow in the Rhine graben and Aquitanian basin, to deep in the Provence basin. Some of these anomalies (Paris basin, Alsace, south of the Provence basin) may be partly related to thick insulating sediments, while for some others (southwestern Aquitanian basin, part of the Provence basin) large-scale fluid circulation may explain superimposed cold and warm anomalies.


1974 ◽  
Vol 31 (5) ◽  
pp. 689-730 ◽  
Author(s):  
F. M. Boyce

This is a discussion of some aspects of the physical behavior of the Great Lakes written for scientists with backgrounds in disciplines other than physics. The basic physical characteristics of Great Lakes basins are summarized. These characteristics are determined by the facts that (i) the basins are closed, (ii) the basins are large enough so that the Coriolis force is an important component of their dynamics, (iii) the principal source of mechanical energy is the wind, and (iv) the basins are vertically stratified in summer. Discussion of large-scale horizontal motions includes both currents and diffusion. The advection–diffusion equation is used as a framework for a discussion which includes a summary of the basic problem confronting hydrodynamic modellers, the parameterization of turbulence phenomena in terms of mean flow variables. Vertical transfer processes are considered, notably the measurement of vertical fluxes of heat and momentum and the computation of eddy diffusion coefficients, the prediction of thermal structure in terms of net surface wind stresses and heat fluxes, and the interactions of waves, currents, and turbulence in the thermocline. The dynamical structure of the coastal zone is outlined, and the review concludes with recommendations for future work on the understanding of vertical turbulent transports, the climatology of Great Lakes coastal zones, and an operational approach to verifying and improving numerical models of lake circulation.


2020 ◽  
Author(s):  
Kathrin Wehrli ◽  
Mathias Hauser ◽  
Sonia I. Seneviratne

<p>The 2018 summer was unusually hot in large areas of the Northern Hemisphere and simultaneous heat waves on three continents led to major impacts to agriculture and society. The event was driven by the anomalous atmospheric circulation pattern during that summer and it was only possible in a climate with global warming. There are indications that in a future, warmer climate similar events might occur regularly, affecting major ‘breadbasket’ regions of the Northern Hemisphere.</p><p>This study aims to understand the role of climate change for driving the intensity of the 2018 summer and to explore the sensitivity to changing warming levels. Model simulations are performed using the Community Earth System Model to investigate storylines for the extreme 2018 summer given the observed atmospheric large-scale circulation but different levels of background global warming: no human imprint, the 2018 conditions, and different mean global warming levels (1.5°C, 2°C, 3°C, and 4°C). The storylines explore the consequences of the event in an alternative warmer or colder world and thus help to increase our understanding of the drivers involved. The results reveal a strong contribution by the present-day level of global warming and provide an outlook to similar events in a possible future climate.</p>


2009 ◽  
Vol 18 (4) ◽  
pp. 379-396 ◽  
Author(s):  
Stefan Brönnimann ◽  
Alexander Stickler ◽  
Thomas Griesser ◽  
Andreas M. Fischer ◽  
Andrea Grant ◽  
...  

2020 ◽  
Author(s):  
Spencer Hill ◽  
Jonathan Mitchell ◽  
Simona Bordoni

<p>Simulations of global warming in numerical models ranging from full-complexity atmosphere-ocean global climate models (GCMs) to highly idealized, dry, atmospheric GCMs almost invariably feature poleward expansion of the annual-mean Hadley cell extent.  The attendant widening of the subtropical dry zones underlying the Hadley cell descending branches makes understanding this response of the large-scale circulation to climate change of paramount societal and ecological importance.  Two theories, one that neglects the role of large-scale eddy process and one that does not, yield similar but ultimately distinct dependencies of the Hadley cell width on planetary parameters, including those such as the equator-to-pole temperature gradient that also robustly change under global warming.  A common approach, therefore, is to use the responses of these parameters diagnosed from GCM simulations to make arguments about their influence on the Hadley cell widening.  This talk offers a critical examination of that approach.</p><p>The approach's key flaw is that the quantities such as the equator-to-pole temperature gradient that appear in the theoretical scalings refer to their values in the *absence* of any large-scale overturning circulation, Hadley cells or eddies, i.e. in the hypothetical state of latitude-by-latitude radiative convective equilibrium (RCE).  This RCE state is what "forces" the Hadley cells, and once the Hadley cells emerge they modify (among others) the equator-to-pole temperature gradient.  Using these theories to understand the Hadley cell response to increased CO2 therefore requires analyzing the responses of the hypothetical RCE state to the increased CO2, which we do via single column model simulations.  In addition, we present a new scaling for the Hadley cell extent applicable to the solsticial seasons that, unlike the existing scalings, does not depend sensitively on the presence or absence of large-scale eddies, which we use in conjunction with solsticial RCE simulations to clarify arguments regarding tropical expansion over the course of the annual cycle in addition to the annual mean.  The implications for these refined theoretical arguments on results from prior studies and on constraining future Hadley cell expansion are discussed.</p>


2015 ◽  
Vol 72 (9) ◽  
pp. 3417-3448 ◽  
Author(s):  
Dehai Luo ◽  
Linhao Zhong ◽  
Christian L. E. Franzke

Abstract In this paper, based on a new wave–eddy interaction framework, the interaction mechanism between the North Atlantic Oscillation (NAO) and synoptic-scale eddies is revealed by using the analytical solutions of a two-scale model as a description of the inverse energy cascade from nonuniform synoptic-scale eddies to the large-scale NAO flow. It is found that the spatial shape of the eddy-induced large-scale streamfunction tendency prior to the NAO onset determines the direction of eddy energy transfer, as well as the phase and growth of the NAO. However, the feedback of the intensified NAO anomaly on synoptic eddies can affect significantly the asymmetry of the NAO between negative (NAO−) and positive (NAO+) phases in amplitude and persistence through the presence or absence of the eddy straining related to cyclonic wave breaking (CWB). For the NAO+, the stretching deformation role of the NAO+ field seems dominant in the eddy variation. Because the eddy energy generation rate (EGR) weakens and tends to be negative in the downstream side of the NAO+ region, the synoptic eddies lose their energy to the NAO+-type zonal flow, thus leading to the weakening of synoptic-scale eddies. However, for the NAO−, the EGR variation shows that synoptic eddies grow over the two upstream sides of the NAO− region by extracting energy from the NAO− shearing deformation field, while losing energy to the mean flow over the upstream middle region through the stretching deformation. This process results in the eddy straining (splitting and strengthening) associated with the CWB.


2012 ◽  
Vol 69 (1) ◽  
pp. 214-235 ◽  
Author(s):  
Tiffany A. Shaw ◽  
William R. Boos

Abstract The tropospheric response to prescribed tropical and subtropical zonally asymmetric torques, which can be considered as idealizations of vertical momentum transfers by orographic gravity waves or convection, is investigated. The linear analytical Gill model response to westward upper-tropospheric torques is compared to the response to a midtropospheric heating, which is a familiar point of reference. The response to an equatorial torque projects onto a Kelvin wave response to the east that is of opposite sign to the response to the east of the heating at upper levels. In contrast, the torque and heating both produce Rossby gyres of the same sign to the west of the forcing and the zonal-mean streamfunction responses are identical. When the forcings are shifted into the Northern Hemisphere, the streamfunction responses have opposite signs: there is upwelling in the Southern (Northern) Hemisphere in response to the torque (heating). The nonlinear response to westward torques was explored in idealized general circulation model experiments. In the absence of a large-scale meridional temperature gradient, the response to an equatorial torque was confined to the tropics and was qualitatively similar to the linear solutions. When the torque was moved into the subtropics, the vorticity budget response was similar to a downward control–type balance in the zonal mean. In the presence of a meridional temperature gradient, the response to an equatorial torque involved a poleward shift of the midlatitude tropospheric jet and Ferrel cell. The response in midlatitudes was associated with a poleward shift of the regions of horizontal eddy momentum flux convergence, which coincided with a shift in the upper-tropospheric critical line for baroclinic waves. The shift in the critical line was caused (in part) by the zonal wind response to the prescribed torque, suggesting a possible cause of the response in midlatitudes. Overall, this hierarchy of analytical and numerical results highlights robust aspects of the response to tropical and subtropical zonally asymmetric torques and represents the first step toward understanding the response in fully comprehensive general circulation models.


2016 ◽  
Vol 9 (1) ◽  
pp. 15-26 ◽  
Author(s):  
James N. Druckman ◽  
Richard M. Shafranek

Abstract The local warming effect occurs when perceived deviations in the day’s temperature affect individuals’ global warming beliefs. When people perceive the day to be warmer than usual, they tend to overestimate the number of warm days throughout the year, and to report increased belief in and worry about global warming. For many, this is normatively concerning because a single day’s perceived temperature fluctuation is not representative of longer-term, large-scale climate patterns. It thus makes for a poor basis for global warming judgments. Recent work shows that the local warming effect might disappear when people receive a reminder to think about weather patterns over the past year (i.e., a correction). This paper employs a survey experiment that extends past research by exploring the generalizability, conditionality, and durability of the corrective information. It identifies the conditions under which a local warming effect is more or less likely to occur.


Sign in / Sign up

Export Citation Format

Share Document