Making exploration of underground flooded mines a reality - the UNEXUP solution

Author(s):  
Márcio Pinto ◽  
Norbert Zajzon ◽  
Luís Lopes ◽  
Balazs Bodo ◽  
Stephen Henley ◽  
...  

<p>The UNEXUP project, funded under EIT Raw Materials, is a direct continuation of the Horizon 2020 UNEXMIN project. While in UNEXMIN efforts were made towards the design, development and testing of an innovative exploration technology for underground flooded mines, in UNEXUP the main goal is to push the UNEXMIN technology into the market, while further improving the system’s hardware, software and capabilities. In parallel, the aim is to make a strong business case for the improved UNEXUP technology, as a result of tests and data collection from previous testing. Improvements to the UX-1 research prototypes will raise technology readiness levels from TRL 6, as verified at the end of the UNEXMIN project, to TRL 7/8 by 2022. A "real service-to-real client" approach will be demonstrated, supporting mineral exploration and mine surveying efforts in Europe with unique data from flooded environments that cannot be obtained without high costs, or risks to human lives, in any other ways.</p><p>The specific purpose of UNEXUP is to commercially deploy a new raw materials exploration / mine mapping service based on a new class of mine explorer robots, for non-invasive resurveying of flooded mines. The inaccessibility of the environment makes autonomy a critical and primary objective of the project, which will present a substantial effort in resurveying mineral deposits in Europe where the major challenges are the geological uncertainty, and technological / economic feasibility of mine development. The robot’s ability to gather high-quality and high-resolution information from currently inaccessible mine sites will increase the knowledge of mineral deposits in Europe, whilst decreasing exploration costs – such as the number of deep exploration drillholes needed. This can potentially become a game changing technology in the mining panorama, where the struggle for resources is ever increasing.</p><p>On the technical side, a fourth robot, modular in nature, will be added to the current multi-robot platform, providing additional functionalities to the exploration system, including better range and depth performance. Hardware and software upgrades, as well as new capabilities delivered by the platform will greatly extend the usefulness of the platform in different environments and applications. Among these: rock sampling, better data acquisition and management, further downsizing, extended range, improved self-awareness and decision making, mature post-processing (such as the deployment of 3D virtual reality models), ability to rescue other robots, and interaction with the data will be targeted during the next years. Upgrading the overall technology with these tools, and possibly additional ones, will allow the system to operate with more reliability and security, with reduced costs.</p><p>These added functions arise from different stakeholders’ feedbacks from the UNEXMIN project. UNEXUP targets parties from the mining, robotics and mineral exploration sectors, as well as all other sectors that have any kind of underwater structure that needs to be surveyed – caves, underground reservoirs, water pipelines and fisheries are among them. For the purpose of exploitation of the technology, a joint company was founded, “UNEXMIN GeoRobotics Ltd”, which is part of the UNEXUP consortium, and is responsible for selling the service to the market.</p>

2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Eleni Koutsopoulou ◽  
Aikaterini Servou ◽  
George Aggelopoulos ◽  
Konstantinos Laskaridis

ROBOMINERS is a new project funded under the European Union’s Research and Innovation Programme Horizon 2020, which aims at employing a bio-inspired robot, focused on the prospect of mineral exploration and extraction within Europe. ROBOMINERS’ innovative approach combines the creation of a new mining ecosystem through the development of a bioinspired robotic miner prototype, able to explore and mine mineral deposits which are currently considered uneconomic due to their small size and difficulty of access. The main objectives of the project include the creation of a European database of potentially suitable locations for the deployment of this novel technology. The building of the pan-EU mineral deposits database is considered vital for the development of the project as it will provide essential information related to deposit type and commodities, spatial and temporal distribution, and location of exploration targets. Several deposits have been reviewed and examined in Greece as potential targets suitable for the ROBOMINERS technology, after considering the specific restrictions and requirements of the project. The main targets have been determined and arranged according to the different aspects required by the applicability of the ROBOMINERS innovative technology.


2021 ◽  
Author(s):  
Balazs Bodo ◽  
Luis Lopes ◽  
Claudio Rossi ◽  
Giorgia Stasi ◽  
Christian Burlet ◽  
...  

<p>ROBOMINERS is developing an innovative approach for the exploitation of currently non-feasible mineral deposits. The approach entails the use of a robot-miner - a bio-inspired reconfigurable robot with a modular nature - in a new mining setting where the activities are nearly invisible and where mining presents less socio-environmental constraints, thus contributing to a more safe and sustainable supply of mineral raw materials.</p><p>The main aim is to design and develop a robotic prototype that is able to perform mining related tasks in settings including both abandoned, currently flooded mines not accessible anymore for conventional mining techniques; or places that have formerly been explored, but whose exploitation was considered as uneconomic due to the small-size of deposits, or their difficulty to access.</p><p>ROBOMINERS’ innovative approach combines the creation of a new mining ecosystem with novel ideas from other sectors, particularly robotics. At this point, work has been done to understand the best methods for the robotminer’s development in 1) biological inspiration, 2) perception and localisation tools, 3) behaviour, navigation and control, 4) actuation methods, 5) modularity, 6)autonomy and resilience, and 7) the selective mining ability. All these aspects combined aim to provide the robotminer XXI Century tools for mineral exploration and exploitation of (currently) unfeasible deposits.</p><p>At the same time, for the vision of a new vision of a mining ecosystem, work is involving studies on 1) developing computer models and simulations, 2) data management and visualisation, 3) rock-mechanical and geotechnical characterisation studies, 4) analysing ground/rock support methods, bulk transportation methods, backfilling types and methods, and 5) sketching relevant upstream and downstream mining industry analogues for the ROBOMINERS concept.  </p><p>After design and development, based on the previously mentioned studies, the robot-miner is set to be tested at targeted areas representatives which include abandoned and/or operating mines, small but high-grade mineral deposits, unexplored/explored non-economic occurrences and ultra depth, not  easily accessible environments. Possible candidates for testing purposes include mines in the regions of Cornwall (UK), mines in the Kupferschiefer Formation (e.g. Poland) or coal mines in Belgium.</p><p>When compared to usual mining methods the ROBOMINERS approach shows: 1) no presence of people in the mine, 2) less mining waste produced, 3) less mining infrastructure, 4) less investment, 5) possibility to explore currently uneconomic resources and 6) new underground small-sized mines, practically “invisible”. Altogether, ROBOMINERS can contribute to solve some of the main issues that make mining’s social license to operate so difficult to get in Europe: land-use, environmental limitations, and socio-economic aspects.</p>


2020 ◽  
Author(s):  
Alireza Malehmir ◽  
Lars Dynesius ◽  
Paul Marsden ◽  
Stefan Buske ◽  
Nelson Pacheco ◽  
...  

<p>Mineral exploration industry needs to push its technological advancement towards finding the so-called critical raw materials. These materials are fundamental for our green technologies and help accelerate the energy transition towards decarbonisation. While in-mine and near-mine exploration will be more convenient in the short term, providing fresh raw materials and mines in greenfield or brownfield areas must not be forgotten in the longer term. As the chase for mineral deposits becomes deeper, seismic methods play a greater role for exploring at depth. Through a series of experiments conducted within the EU-funded Smart Exploration project, we have innovated a number of hardware and methodological solutions for in-mine as well as brownfield seismic exploration. Along with these, legacy data have also been recovered, reprocessed and their values for mineral exploration illustrated. The legacy data examples are from the Ludvika Mines (Nordic Iron Ore AB) of central Sweden and Neves-Corvo (Somincor-Lundin Mining) of southern Portugal.</p><p>In particular, through the development of a GPS-time system, we have managed to acquire a globally unique semi3D in-mine and surface seismic dataset at the world-class Neves-Corvo mine. This helped to utilize four exploration tunnels at 600 m depth and two receiver lines on the surface allowing over 1000 recorders to be synchronized for down-tunnel exploration. A broadband electromagnetic-based seismic source (7 kN or 1.5t), developed also in the project, was used as the seismic source.</p><p>In central Sweden, at an iron-oxide mining site of Nordic Iron Ore company, 2D seismic profiles helped to suggest potential resources in the down-dip continuation of the known deposits but also in their footwall. A follow-up and more recent survey employed over 1250 seismic recorders and a 32t vibrator to acquire a sparse 2 by 2 km seismic dataset. The data show great quality and allow to image lateral extent of the deposits and crosscutting reflections that may be important factors for mine planning and understanding structural evolution of the deposits. The broadband seismic source was also tested at the site along the existing 2D profiles with raw data already showing a number of reflections interpreted to be from the mineralization. This survey further illustrates that the seismic source functions well and has a great potential for hard rock seismic applications. </p><p><strong>Acknowledgements:</strong> <span>This work was supported by the Smart Exploration<sup>TM</sup> project. </span>Smart Exploration has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 775971.</p>


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1221
Author(s):  
Domenico Frattini ◽  
Gopalu Karunakaran ◽  
Eun-Bum Cho ◽  
Yongchai Kwon

The use of microbial fuel cells (MFCs) is quickly spreading in the fields of bioenergy generation and wastewater treatment, as well as in the biosynthesis of valuable compounds for microbial electrolysis cells (MECs). MFCs and MECs have not been able to penetrate the market as economic feasibility is lost when their performances are boosted by nanomaterials. The nanoparticles used to realize or decorate the components (electrodes or the membrane) have expensive processing, purification, and raw resource costs. In recent decades, many studies have approached the problem of finding green synthesis routes and cheap sources for the most common nanoparticles employed in MFCs and MECs. These nanoparticles are essentially made of carbon, noble metals, and non-noble metals, together with a few other few doping elements. In this review, the most recent findings regarding the sustainable preparation of nanoparticles, in terms of syntheses and sources, are collected, commented, and proposed for applications in MFC and MEC devices. The use of naturally occurring, recycled, and alternative raw materials for nanoparticle synthesis is showcased in detail here. Several examples of how these naturally derived or sustainable nanoparticles have been employed in microbial devices are also examined. The results demonstrate that this approach is valuable and could represent a solid alternative to the expensive use of commercial nanoparticles.


2000 ◽  
Vol 15 (1) ◽  
pp. 2-8 ◽  
Author(s):  
N.C. Wagner ◽  
S. Ramaswamy ◽  
U. Tschirner

AbstractA pre-economic feasibility study was undertaken to determine the potential of cereal straw for industrial utilization in Minnesota. Specifically, utilizing straw for pulp and paper manufacture was of interest. The availability of cereal straw fiber supplies at various locations across the state of Minnesota, along with pre-processing issues such as transportation, harvesting, handling, and storage, are discussed and priced. The greatest economic advantage of straw for industrial use appears to be the low cost of the raw material compared to traditional raw materials. This also provides an excellent opportunity for additional income for farmers. The methodology and information provided here should be helpful in evaluating the feasibility of utilizing straw for other industrial purposes in other parts of the world. However, in some Third World countries, long-standing on-farm, traditional uses of cereal straws for fuel, fiber, and animal feed may limit their availability for industrial utilization.


2020 ◽  
pp. 77-87
Author(s):  
Ivan I. Lishtvan ◽  
Boris V. Kurzo ◽  
Oleg M. Gaidukevich ◽  
Alexandr I. Sorokin

The results of the study of the resource potential of Lelchitsky and adjacent regions are presented. It is shown that the raw materials for the production of crushed stone and natural stone in the amount of 1 million m3 is actively extracted in the region with the prospect of volume increasing up to 10 million m3. In addition, peat and sapropel are mined for the production of organic fertilizers, feed additives and drilling fluids. Brown coal and bentonite clay deposits are promising for mining. Peat, sapropel and brown coal should be considered to be raw materials for complex deep processing with the release of more products and materials with high added value. The obtained results allow to conclude that the development of Lelchitsky region and the economic feasibility of building Polesie section of the railway is possible only through integrated development and the most complete use of the entire resource base of the region.


2021 ◽  
Vol 09 (04) ◽  
pp. 31-37
Author(s):  
Ləman Müşfiq qızı Həsənzadə ◽  
◽  
Tapdıq Güləhməd oğlu Həsənov ◽  

One of the most urgent tasks of economic geography in the article is to ensure the sustainable development of the Jabrayil region on new foundations, whose economic and social facilities, which have been under occupation for many years, have been completely destroyed. The initial data collected on the objects destroyed in the area as a result of the analysis and their geographical location can be used as substantive information in the reconstruction activities of the district. As a result of the analysis, the existing potential in the region: favorable transport, new Zangilan and Fizuli centers in the neighborhood, sand, cement raw materials, fertile lands, canals, rivers, hydropower and solar resources will have a significant impact on the rehabilitation and development of farms. As a result of the research, the optimal centers for the location of "smart villages" in the region were identified. The article will focus on the development of local and global transport routes through the region, the use of local mineral deposits and the effective organization of internal and external relations. The information obtained as a result of the research will allow to build the perspective territorial planning of the regional economy on the basis of existing standards. Key words: consequences of occupation, advantages of reconstructed forms of economy, substantiation of centers, features of distribution in the area


2012 ◽  
Vol 6 (1) ◽  
Author(s):  
Mark E. Rentschler ◽  
Keir D. Hart ◽  
Max B. Mitchell

The primary objective of this project is to design, fabricate, and test a small, integrated camera system for aiding in the visualization and surgical repair of certain types of ventricular septal defects (VSD), in pediatric patients. Currently, no purpose-designed commercial device to view VSDs from the left ventricle of the heart exists. The left ventricular perspective is ideal for obtaining an unobstructed view of the VSD. This VSD camera device would also provide a platform for passing a suture through the hole in the ventricular septum, with future work implementing additional tools capable of more advanced tasks. This camera device will help solve some of the major issues currently associated with cardiac imaging and surgical closure of VSDs in newborns and young children This paper examines the design development and preliminary evaluation of a proof of concept device. Included are preliminary results of image quality comparisons, design details of a pediatric-specific VSD camera device, and initial outcomes from in vitro testing.


Detritus ◽  
2020 ◽  
pp. 23-28
Author(s):  
Maria Villen-Guzman ◽  
Maria del Mar Cerrillo-Gonzalez ◽  
Juan Manuel Paz-Garcia ◽  
Carlos Vereda-Alonso ◽  
Cesar Gomez-Lahoz ◽  
...  

The sequential extraction procedure as a tool to assess the environmental risk of metals in solid matrices has been widely studied. In this work, another promising application of these methods is proposed: the evaluation of the recoverability of critical raw materials from a solid matrix. To this aim, the normalized sequential extraction procedure BCR was applied to a contaminated soil from the south of Spain. In addition to this, the influence of the incomplete dissolution of carbonates contained in the soil on the fractionation results has been also studied. The high percentage of metal in the most mobile fractions suggested the potential use of the solid matrix as secondary source. The use of this approach together with environmental and economic feasibility studies would be an approach toward the circular economy.


Sign in / Sign up

Export Citation Format

Share Document