Options and challenges for collaboration on climate service related activities at KNMI and KMI

Author(s):  
Janette Bessembinder ◽  
Rozemien De Troch

<p>National meteorological institutes have generally a longstanding scientific expertise in climate research, climatological observations, and state-of-the-art climate modelling. In the context of climate change this expertise and service provision of climatic data, information and knowledge is of crucial importance to meet the societal needs. Furthermore, in each country the provision of climate services is generally arranged differently and strongly determined by governance, the official strategy and tasks of the meteorological institutes, as well as financing.</p><p>To better align the activities between national climate service providers, the Royal Netherlands Meteorological Institute and the Royal Meteorological Institute of Belgium successfully applied for the ERA4CS action for the exchange of staff, aiming to contribute to the alignment of R&D programmes, tools/instruments and/or climate related agendas of both countries.</p><p>In the context of climate services, previous interactions between both institutes are mainly related to sporadically contacts between scientists in need of climatological data or information on methods for the definition of e.g. climate scenarios. However, Belgium and the Netherlands are neighbouring, both small countries, and climate change doesn’t stop at the border. Furthermore, coastal and inland regions along the borders are yet very sensitive to the impacts of climate change, and thus might cause cross-border issues in the future. </p><p>Therefore, a two-way visit of senior staff responsible for climate services in both institutes is planned for early 2020. The visits aim to identify the differences and similarities on how climate services are currently provided and the broader context in which climate services are developed and delivered (legal mandate, what other organisations deliver climate services, relation with policy e.g. National Adaptation Strategies). More specifically, the services related to both current and future climate conditions (i.e. climate scenarios), the respective impact sectors and users/stakeholders of the climate services and the interaction with them, the used tools and methods for the creation of climate services, and the outreach and communication strategies for climate services will be discussed through informal interactions, meetings and presentations. </p><p>An overview of these discussions together with conclusions on how climate-service related actions can be aligned and consolidated within future collaborations, will be presented.</p>


2013 ◽  
Vol 94 (6) ◽  
pp. 807-819 ◽  
Author(s):  
Mark S. Brooks

Climate services can help society manage climate-related risk and capitalize on favorable conditions by providing data analysis, data products, and scientific expertise. Meeting society's needs requires matching them with ongoing scientific research. Despite the best of intentions, some research never makes it into operational products or services. Likewise, some societal needs are never met and scientific capabilities never realized. The three E's of climate services—engagement, entrepreneurship, and evaluation—can help climate service providers bridge this research-to-operations “valley of death” and create valuable, innovative climate services for our nation. This essay aims to stimulate such progress in the climate services enterprise.



2021 ◽  
Vol 3 ◽  
Author(s):  
Eva Boon ◽  
Hasse Goosen ◽  
Felix van Veldhoven ◽  
Rob Swart

Cities, regions and countries are increasingly adapting to climate change. Adaptation approaches often build on disaster management activities to deal with climate extremes and make improvements to already existing systems to prepare for climate change, e.g., through water engineering or cooling existing buildings. But ideally, adaptation strategies aim also at tackling the root causes of climate risks through broader sustainable development pathways. Such transformational approaches, however, are still in their infancy. In this perspective paper we argue that there is a lack of guidance to support policy-makers to develop transformational adaptation strategies. There is a need and opportunity to develop climate services that support transformational adaptation. We explore how climate services can support transformational adaptation, drawing from literature, practical experience and illustrative examples. We identify four knowledge requirements: (1) system knowledge to identify the root causes and solutions; (2) inspirational and cross-disciplinary knowledge to develop a long-term vision; (3) a clear climate message and guiding principles to mainstream the vision; and (4) design principles that are connected to the priorities and interests of the stakeholders. We conclude that developing climate services for transformational adaptation involves a delicate process of simplifying and aggregating climate knowledge, as well as integrating it with knowledge about the physical, economic and social systems of cities and regions. This means that climate service providers need to widen their scope and skills, and collaborate with experts in the fields urban planning, landscape architecture, ecology, health, and sociology.



2015 ◽  
Vol 61 (4) ◽  
pp. 669-689 ◽  
Author(s):  
Pamela D. Noyes ◽  
Sean C. Lema

Abstract Global climate change is impacting organisms, biological communities and ecosystems around the world. While most research has focused on characterizing how the climate is changing, including modeling future climatic conditions and predicting the impacts of these conditions on biodiversity, it is also the case that climate change is altering the environmental impacts of chemical pollution. Future climate conditions are expected to influence both the worldwide distribution of chemicals and the toxicological consequences of chemical exposures to organisms. Many of the environmental changes associated with a warming global climate (e.g., increased average – and possibly extreme – temperatures; intense periods of drier and wetter conditions; reduced ocean pH; altered salinity dynamics in estuaries) have the potential to enhance organism susceptibility to chemical toxicity. Additionally, chemical exposures themselves may impair the ability of organisms to cope with the changing environmental conditions of the shifting climate. Such reciprocity in the interactions between climate change and chemicals illustrates the complexity inherent in predicting the toxicological consequences of chemical exposures under future climate scenarios. Here, we summarize what is currently known about the potential reciprocal effects of climate change and chemical toxicity on wildlife, and depict current approaches and ongoing challenges for incorporating climate effects into chemical testing and assessment. Given the rapid pace of new man-made chemistries, the development of accurate and rapid methods to evaluate multiple chemical and non-chemical stressors in an ecologically relevant context will be critical to understanding toxic and endocrine-disrupting effects of chemical pollutants under future climate scenarios.



2022 ◽  
pp. 1900-1916
Author(s):  
Andrew Onwuemele

Changes in climate have caused impacts on natural and human systems. These impacts affect poor people's lives through impacts on livelihoods and the destruction of homes. In Delta State, Nigeria, the impacts of climate change are real. Adaptation has been identified as the key to reducing the impacts of climate change. However, successful adaptation depends on use of climate services. While climate services are essential to adaptation, the services do not always reach the users who need it most. This chapter analyzes factors influencing access and utilization of climate services in Delta State. The chapter utilizes the survey research while data were analyzed using both descriptive and inferential statistics. Findings show a low utilization of climate service. The determinants of access and utilization of climate services include income, educational attainments, access to ICT facilities, extension agents, and the level of local climate variability. The chapter calls for awareness creation on the importance of climate services.



2021 ◽  
Author(s):  
Elizabeth Fuller ◽  
Claire Scannell ◽  
Victoria Ramsey ◽  
Rebecca Parfitt ◽  
Nicola Golding

<p>In 2018, the UN estimated that around 55% of the world’s population currently live within urban areas, with this value projected to rise to 60% by 2030 (United Nations, 2018). High levels of urbanisation, coupled with an increasing trend in extreme weather under future climate change scenarios, combine to create significant challenges to increasing urban resilience for the future (Masson et al., 2020).</p><p>Urban climate services provide tools to support decision making at a range of scales across the city, from day-to-day operations to informing urban design over longer timescales (Grimmond et al., 2015). Whilst urban climate services may be developed at a range of scales (Grimmond et al., 2020), this presentation looks at a prototype climate service which provides long-term climate change projections at the city-specific scale. The ‘City Pack’ was developed through a process of co-production, in which project development aims to move away from a one-way push of scientific information, to a two-way collaborative process of knowledge construction and sharing (Vincent et al., 2019).</p><p>This ‘City Pack’ service was co-developed by the Met Office and Bristol City Council following an assessment of the Council’s climate information needs. The City Pack comprises of three non-technical factsheets which explain how the climate of Bristol has changed and will continue to change into the 21<sup>st</sup> Century based on the UKCP climate projections. The City Pack’s primary aims are to raise awareness of how a cities climate may change in the future and to inform the development of city resilience whilst also providing a tool to be used by city stakeholders to raise awareness of climate change across the council. The audience for the City Pack therefore includes city officials, city planners and the general public. The Bristol City Pack has since provided an evidence base for the Bristol City Council Climate Change Risk Assessment and informed Bristol’s Climate Strategy. In addition, the City Pack has been used to engage with the council’s wider stakeholders and also as a communication and training tool. As such, whilst the co-production of a climate service may be time and resource intensive, the process may also be rewarded with the production of a highly tailored and user-relevant tool.</p><p>Following the success of the prototype ‘City Pack’ service for Bristol City Council, the Met Office are continuing to produce City Packs for additional cities across the UK, and also in China. The project is seeking to ascertain if services which are co-produced with and bespoke to one set of stakeholders, may provide an equally valuable service for other cities and if so, how can we make these services scalable.</p>



2020 ◽  
Author(s):  
Jacob Hirschberg ◽  
Simone Fatichi ◽  
Georgie Bennett ◽  
Brian McArdell ◽  
Stuart Lane ◽  
...  

<p>Debris flows are rapid mass movements composed of a mixture of water and sediments and often pose a danger to humans and infrastructure. In the Alpine environment, they are mostly triggered by intense rainfall, snowmelt or a combination thereof, and conditioned by sediment availability. Their occurrence is expected to increase in a warmer climate due to changes in the hydrological regime (e.g. higher rainfall intensity, lower duration of snow cover). Furthermore, sediment production is likely to accelerate due to permafrost thawing and changes in freeze-thaw cycles, resulting in increased sediment availability. For the purpose of climate change impact assessment on sediment yield and debris-flow activity, interactions and feedbacks of climate and the aforementioned processes need to be considered jointly.</p><p>In the study presented here, we address this challenge by forcing a sediment cascade model (SedCas<sup>1</sup>) with precipitation and temperature from a stochastic weather generator (AWE-GEN<sup>2</sup>) producing ensembles of possible climate in the present and for the future. The chosen study site is the Illgraben, a debris-flow prone catchment in the Swiss Alps which currently produces 3-4 debris flows yearly on average. SedCas conceptualizes a geomorphic system in which hillslopes produce and store sediments from landslides and eventually deliver them to the channels. From there, sediments can be mobilized by concentrated surface runoff and transferred out of the catchment in form of bedload, hypreconcentrated flow, or debris flows, depending on the surface runoff magnitude and the sediment availability. AWE-GEN operates at the hourly scale and is trained for the current climate with observed data and for the future climate using the newest climate change projections for Switzerland CH2018 developed by the National Center for Climate Services<sup>3</sup>.</p><p>Preliminary results reveal a likely increase in debris-flow occurrence in the Illgraben in the future. Such an increase can be attributed to an extension in the debris-flow seasonal changes in the discharge regime. Furthermore, the number of landslides filling the sediment storage increases because they are affected by a shorter duration of snow cover and thus greater exposure to freeze-thaw weathering. However, projections are subject to large uncertainties, stemming not only from uncertainty in climate scenarios, but also from internal climate variability. Furthermore, the simplified hillslope weathering and debris-flow triggering mechanisms contribute to the overall uncertainty. Nevertheless, the methodology is thought to be transferable to any sediment-cascade-like catchment where dominant processes are driven by climate. Lastly, this work highlights the importance of considering stochasticity in climate and sediment history for projections of magnitudes and frequencies of relative rare events as debris flows. This allows us to explicitly separate climate change signals in geomorphic processes from fluctuations induced by internal natural variability.</p><p>REFERENCES</p><p><sup>1</sup> Bennett, G. L., et al. "A probabilistic sediment cascade model of sediment transfer in the Illgraben." Water Resources Research 50.2 (2014): 1225-1244. doi: 10.1002/2013WR013806</p><p><sup>2</sup> Fatichi, S., et al. "Simulation of future climate scenarios with a weather generator." Advances in Water Resources 34.4 (2011): 448-467. doi: 10.1016/j.advwatres.2010.12.013</p><p><sup>3</sup> CH2018 - Climate Scenarios for Switzerland. National Centre for Climate Services (2018): doi: 10.18751/Climate/Scenarios/CH2018/1.0</p>



Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 121
Author(s):  
Christiana Photiadou ◽  
Berit Arheimer ◽  
Thomas Bosshard ◽  
René Capell ◽  
Maria Elenius ◽  
...  

The next generation of climate services needs not only tailoring to specific user needs but to provide, in addition, access to key information in a usable way that satisfies the needs of different users’ profiles; especially web-based services. Here, we present the outcomes from developing such a new interactive prototype. The service provides data for robust climate analysis to underpin decision-making when planning measures to compensate for climate impact. The goal is to facilitate the communication on climate information between climate modelling communities and adaptation or mitigation initiatives from vulnerable countries that are applying for funds from the Green Climate Fund (GCF). A participatory process was ensured during four workshops in four pilot countries, with an audience of national and international experts. During this process it was made clear that in all countries there is a strong need for knowledge in climate science, while in most countries there was also an increasing need of capacity in hydrological modelling and water management. The active interaction during the workshops was found necessary to facilitate the dialogue between service developers and users. Understanding the users, transparency on potentials and limitations of climate services together with capacity development in climate science and methods were required components in the development of the service.



2021 ◽  
Author(s):  
Konstantinos V. Varotsos ◽  
Anna Karali ◽  
Gianna Kitsara ◽  
Christos Giannakopoulos

<p>In this study we examine the impacts of climate change on the tourism sector using a number of tailored climate indicators assessing whether climate conditions are suitable for touristic activities such as the Tourism Climate Index -focusing on outdoor activities- and the Beach Climate Index -focusing on beach activities- as well as fire danger indicators such as the Canadian Fire Weather Index, focusing on forest fire risk. To this aim daily or sub-daily data for a number of meteorological variables from a large ensemble member of Regional Climate Models from the EURO-CORDEX data base are used. The data cover the period 1971-2100 under three RCP emissions scenarios, namely RCP2.6, RCP4.5 and RCP8.5. The analysis is performed for three periods, the 1971-2000 which is used as a reference period and two future periods, the 2021-2050 and 2071-2100. The results indicate that the robust warming projected on a seasonal basis, under all three climate scenarios, drives the changes on all indicators examined. Regarding the climate suitability indicators for tourism the results indicate a lengthening of the tourist season suitable climate conditions while for the fire danger indicators, an increase in the number of days with high and very high fire danger conditions is projected. The most pronounced changes are evident towards the end of the century and under the RCP8.5 future emissions scenario. This study is performed in the framework of CLIMPACT, a<strong> </strong>Greek national funded project which aims<strong> </strong>to immediate integration, harmonization and optimization of existing climate services and early warning systems for climate change-related natural disasters in Greece, including supportive observations from relevant national infrastructure.</p><p> </p>



2021 ◽  
Author(s):  
Lola Corre ◽  
Samuel Somot ◽  
Jean-Michel Soubeyroux ◽  
Sébastien Bernus ◽  
Agathe Drouin ◽  
...  

<p>The French National Climate Service “Drias, futures of climate” was launched in 2012, as a response of the French scientific community to society’s need for climatic information. It is mainly composed of a website that provides easy access to the best available climate data to characterize climate change over France. Latest advances developed in 2020 include the availability of a new set of regional climate scenarios corrected by a quantile-mapping based method with correction depending on the weather regime. As for the previous set, the climate projections are based on the EURO-CORDEX ensemble, whose contents have been greatly enriched over the past years. Singular effort was done to build a robust and synthetic set that well represents the uncertainties of climate change over France. The different criteria defined to select the simulations will be presented, and the range of the projected climate change will be examined, with respect to larger ensembles.</p><p> </p>



Sign in / Sign up

Export Citation Format

Share Document