scholarly journals In Niger, the Expected Futur Climate Will Provide Better Conditions than the Current One to Diospyros Mespiliformis Hochst. ex A.DC. Rich.

2020 ◽  
Vol 10 (3) ◽  
pp. 16
Author(s):  
Ado ALI ◽  
Laouali ABDOU ◽  
Maman Maârouhi INOUSSA ◽  
Josiane SEGHIERI ◽  
Ali MAHAMANE

The human use of plant resources and land to face increasing population needs in Africa to the regression or even the disappearance of some useful multi-purpose species such as Diospyros mespiliformis Hochst. Ex A. Rich. Increasing climatic variability is an additional threat for these species. The present study aims to identify the areas that are potentially favorable to D. mespiliformis conservation or regeneration in Niger and to analyze the impact of the current climate change. Thus to assess the D. mespiliformis distribution areas, the geographic coordinates of D. mespiliformis, the bioclimatic data, the soil and vegetation cover were collected and used to modeling based on the principle of maximum entropy (MaxEnt). The soil cover, annual cumulated precipitations and the average temperature are the most determining variables. This study also shows that the ecological niche of D. mespiliformis is located in the Central and Eastern bioclimates, within which almost 3% of the surface is very favorable under the current climate conditions and may reach 3. 94 % under 2050 ones after. These results indicate that the climate change expected in Niger is expected to be more favorable to the studied species than the current climate conditions. This represents an opportunity for its domestication.

2017 ◽  
Vol 56 (2) ◽  
pp. 163-187 ◽  
Author(s):  
Anwar Hussain ◽  
Rabia Bangash

This study estimates the impact of major climate variables (temperature and rainfall) on crops’ productivity across four agro-ecological zones of Pakistan. The crops selected were rice, wheat, maize, cotton and sugarcane. The study used panel data from 1991 to 2010 and applied panel least square techniques. The results revealed that the effect of climatic variables on crops yield varied across agro climatic zone due to differences in their climate conditions. Temperature and rainfall were the important determinants affecting crops productivity across agro climatic zones of Pakistan. Wheat productivity has been impacted more in Northern Irrigated Plain-a by average temperature and in Northern Dry Mountains by rainfall than the other zones. Rice productivity has been impacted more in Dry Mountains by average temperature and in the Indus Delta by rainfall than other zones. Sugarcane productivity has been impacted more by average temperature and rainfall in Indus Delta than zone IV. Maize productivity has been impacted more by average temperature and rainfall in Northern Dry Mountains than other zones. Finally the study recommends proper mitigative and adaptative strategies to enhance the positive and lessen the adverse impact of climate change on crops productivity across agro climatic zones of Pakistan. JEL Classifications: Q15, Q54, Q57 Keywords: Climate Change, Agro-ecological Zones, Rainfall, Temperature, Productivity


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The impact of climate change on climatic actions could significantly affect, in the mid-term future, the design of new structures as well as the reliability of existing ones designed in accordance to the provisions of present and past codes. Indeed, current climatic loads are defined under the assumption of stationary climate conditions but climate is not stationary and the current accelerated rate of changes imposes to consider its effects.</p><p>Increase of greenhouse gas emissions generally induces a global increase of the average temperature, but at local scale, the consequences of this phenomenon could be much more complex and even apparently not coherent with the global trend of main climatic parameters, like for example, temperature, rainfalls, snowfalls and wind velocity.</p><p>In the paper, a general methodology is presented, aiming to evaluate the impact of climate change on structural design, as the result of variations of characteristic values of the most relevant climatic actions over time. The proposed procedure is based on the analysis of an ensemble of climate projections provided according a medium and a high greenhouse gas emission scenario. Factor of change for extreme value distribution’s parameters and return values are thus estimated in subsequent time windows providing guidance for adaptation of the current definition of structural loads.</p><p>The methodology is illustrated together with the outcomes obtained for snow, wind and thermal actions in Italy. Finally, starting from the estimated changes in extreme value parameters, the influence on the long-term structural reliability can be investigated comparing the resulting time dependent reliability with the reference reliability levels adopted in modern Structural codes.</p>


2021 ◽  
Author(s):  
Marine Prieur ◽  
Alexander C. Whittaker ◽  
Fritz Schlunegger ◽  
Tor O. Sømme ◽  
Jean Braun ◽  
...  

&lt;p&gt;Sedimentary dynamics and fluxes are influenced by both autogenic and allogenic forcings. A better understanding of the evolution of sedimentary systems through time and space requires us to decipher, and therefore to characterise, the impact of each of these on the Earth&amp;#8217;s landscape. Given the current increase in the concentration of atmospheric carbon, studying the impact of rapid and global climate changes is of particular importance at the present time. Such events have been clearly defined in the geologic record. Among them, the Paleocene-Eocene Thermal Maximum (PETM) has been extensively studied worldwide and represents a possible analogue of the rapid current climate warming.&lt;/p&gt;&lt;p&gt;The present project focuses on the Southern Pyrenees (Spain) where excellent exposures of the Paleocene-Eocene interval span a large range of depositional environments from continental to deep-marine. These conditions allow us to collect data along the whole depositional system in order to document changes in sediment fluxes and paleohydraulic conditions. Because hydrological conditions have an impact on sediment transport through hydrodynamics, paleoflow reconstructions can shed light on changes in sediment dynamics. This information is reconstructed from the statistical distributions of channel morphologies, characteristic system dimensions including bankfull channel depth and width, and grain-sizes.&lt;/p&gt;&lt;p&gt;With this approach, our aim is to provide both qualitative and quantitative assessments of the magnitude and extent of the perturbation of sedimentary fluxes along an entire source-to-sink system during an episode of extreme climate change. This will lead to a better understanding of the impact of abrupt climate change on earth surface systems in mid-latitudinal areas, with possible implications for current climate adaptation policy.&lt;/p&gt;&lt;p&gt;This research is carried out in the scope of the lead author&amp;#8217;s PhD project and is part of the S2S-FUTURE European Marie Sk&amp;#322;odowska-Curie ITN (Grant Agreement No 860383).&lt;/p&gt;


2021 ◽  
Author(s):  
luis Augusto sanabria ◽  
Xuerong Qin ◽  
Jin Li ◽  
Robert Peter Cechet

Abstract Most climatic models show that climate change affects natural perils' frequency and severity. Quantifying the impact of future climate conditions on natural hazard is essential for mitigation and adaptation planning. One crucial factor to consider when using climate simulations projections is the inherent systematic differences (bias) of the modelled data compared with observations. This bias can originate from the modelling process, the techniques used for downscaling of results, and the ensembles' intrinsic variability. Analysis of climate simulations has shown that the biases associated with these data types can be significant. Hence, it is often necessary to correct the bias before the data can be reliably used for further analysis. Natural perils are often associated with extreme climatic conditions. Analysing trends in the tail end of distributions are already complicated because noise is much more prominent than that in the mean climate. The bias of the simulations can introduce significant errors in practical applications. In this paper, we present a methodology for bias correction of climate simulated data. The technique corrects the bias in both the body and the tail of the distribution (extreme values). As an illustration, maps of the 50 and 100-year Return Period of climate simulated Forest Fire Danger Index (FFDI) in Australia are presented and compared against the corresponding observation-based maps. The results show that the algorithm can substantially improve the calculation of simulation-based Return Periods. Forthcoming work will focus on the impact of climate change on these Return Periods considering future climate conditions.


Author(s):  
Maria Polozhikhina ◽  

Climate conditions remain one of the main risk factors for domestic agriculture, and the consequences of global climate change are ambiguous in terms of prospects for agricultural production in Russia. This paper analyzes the impact of climate change on the country’s food security from the point of view of its self-sufficiency in grain primarily. Specific conditions prevailing on the Crimean peninsula are also considered.


2021 ◽  
Author(s):  
Bekam Bekele Gulti ◽  
Boja Mokonnen Manyazew ◽  
Abdulkerim Bedewi Serur

Abstract Climate change (CC) and land use/cover change (LUCC) are the main drivers of streamflow change. In this paper, we investigate the impact of climate and LULC change impact on stream flow of Guder catchment by using Soil and Water Assessment model (SWAT). The scenarios were designed in a way that LULC was changed while climate conditions remain constant; LULC was then held constant under a changing climate and combined effect of both. The result shows that, the combined impacts of climate change and LULC dynamics can be rather different from the effects that follow-on from LULC or climate change alone. Streamflow would be more sensitive to climate change than to the LULC changes scenario, even though changes in LULC have far-reaching influences on streamflow in the study region. A comprehensive strategy of low impact developments, smart growth, and open space is critical to handle future changes to streamflow systems.


2017 ◽  
Author(s):  
Sri Rum Giyarsih

Global warming is the increase in the average temperature of the Earth’s surface. According to the IPCC (Intergovernmental Panel on Climate Change) average temperature of the Earth’s surface was global warming is the increase in the average temperature of the 0.74 ± 0.18 0C (1.33 ± 0.32 F) over the last hundred years. The impact of rising temperatures is the climate change effect on agricultural production. If the community does not craft made adaptation to global warming will have an impact on food security. This research aims to know the society’s adaptation to food security as a result of global warming and to know the influence of global warming on food security. The research was carried out based on survey methods. The influence of global warming on food security is identified with a share of household food expenditure and the identification of rainfall. Sampling was done by random sampling. The Data used are the primary and secondary data. Primary Data obtained through structured interviews and depth interview using a questionnaire while the secondary data retrieved from publication data of the Central Bureau Statistics B(BPS), Department of Agriculture and Climatology Meteorology and Geophysics (BMKG). The expected results of the study is to know variations of food security due to global warming in Kulon Progo Regency. Comprehensive knowledge through community participation and related Government increased food security that is used as the basis for drafting the model society’s adaptation to the impacts of global warming.


2021 ◽  
Author(s):  
Karine Bastos Leal ◽  
Luís Eduardo de Souza Robaina ◽  
André de Souza De Lima

Abstract An increase in the global mean sea is predicted during the 21st century as a consequence of global average temperature projections. In addition, changes in the strength of atmospheric cyclonic storms may alter the development of storm surges, exacerbating the risks to coastal communities. Based on the fact that the interest and range of papers are growing on this topic, this study aims to present the global scientific production status of studies that have correlated climate change and the impact of storm surges on the coastal zone leading to erosion and flooding (inundation) via a bibliometric analysis. We analyzed 429 papers published in journals between 1991 and February 2021 from the Scopus database. Through the VOSviewer and Bibliometrix R package, we describe the most relevant countries, affiliations, journals, authors, and keywords. Our results demonstrate that there has been an exponential growth in the research topic, and that authors from the United States and the United Kingdom are the most prolific. Among the 1454 authors found, 10 researchers published at least 5 papers on the topic and obtained at least 453 citations in the period. The most represented journals were the Journal of Coastal Research, Climatic Change, and Natural Hazards. We also found, and discuss, the lack of standardization in the choice of keywords, of which climate change, storm surge, and sea level rise are the most frequent. Finally, we have written a guide to facilitate the authors' bibliographic review.


Author(s):  
John Luke Gallup

It’s complicated. Tropical diseases have unusually intricate life cycles because most of them involve not only a human host and a pathogen, but also a vector host. The diseases are predominantly tropical due to their sensitivity to local ecology, usually due to the vector organism. The differences between the tropical diseases mean that they respond to environmental degradation in various ways that depend on local conditions. Urbanization and water pollution tend to limit malaria, but deforestation and dams can exacerbate malaria and schistosomiasis. Global climate change, the largest environmental change, will likely extend the range of tropical climate conditions to higher elevations and near the limits of the tropics, spreading some diseases, but will make other areas too dry or hot for the vectors. Nonetheless, the geographical range of tropical diseases will be primarily determined by public health efforts more than climate. Early predictions that malaria will spread widely because of climate change were flawed, and control efforts will probably cause it to diminish further. The impact of human disease on economic development is hard to pin down with confidence. It may be substantial, or it may be misattributed to other influences. A mechanism by which tropical disease may have large development consequences is its deleterious effects on the cognitive development of infants, which makes them less productive throughout their lives.


2022 ◽  
pp. 748-763
Author(s):  
Ashok K. Rathoure ◽  
Unnati Rajendrakumar Patel

Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this chapter, the authors first examined the different possible effects of climate change that can operate at individual, population, species, community, ecosystem, notably showing that species can respond to climate challenges by shifting their climatic change. Climate change is one of the most important global environmental challenges that affect all the natural ecosystems of the world. Due to the fragile environment, mountain ecosystems are the most vulnerable to the impact of climate change. Climatic change will affect vegetation, humans, animals, and ecosystem that will impact on biodiversity. Mountains have been recognized as important ecosystems by the Convention on Biological Diversity. Climate change will not only threaten the biodiversity, but also affect the socio-economic condition of the indigenous people of the state. Various activities like habitat loss, deforestation, and exploitation amplify the impact of climate change on biodiversity.


Sign in / Sign up

Export Citation Format

Share Document