Heatwaves and Predictability - the Role of Rossby Waves and Atmospheric Waveguides

Author(s):  
Rachel White ◽  
Chloé Prodhomme ◽  
Georgios Fragkoulidis ◽  
Stefano Materia ◽  
Constantin Ardilouze

<p>Heat waves can have a devastating impact on human society and ecosystems, and thus improved understanding and predictability of such events would provide huge benefits. It has been shown previously that many extreme temperature events are associated with quasi-stationary, or recurrent, Rossby waves (hereafter QSWs). We show that these QSWs are often associated with atmospheric waveguides, providing some dynamical understanding of why such weather patterns persist. In the context of this framework, we study the subseasonal-to-seasonal (S2S) predictability of heatwaves, QSWs, and atmospheric waveguides. Operational seasonal forecasts can reproduce the observed climatological statistics of QSWs, and the observed connection between QSWs and extreme temperatures over Europe, although with some biases. To better understand the underlying dynamics of the seasonal forecast models, we explore whether such models are capable of reproducing the observed connection between QSWs and atmospheric waveguides,  linked to persistent, and thus high impact, extreme heat events. We examine the S2S predictability of atmospheric waveguides and high amplitude QSW events, to better understand the potential S2S predictability of heatwaves.</p>

MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 401-422
Author(s):  
RAJENDRAKUMAR JENAMANI

During the decade of 1998-2007, both Orissa and Andhra Pradesh at east Coast of India have been affected by heat waves more frequently and more severely causing very high damages to human lives. The most severe heat wave years for the region in the recent past are summer of 1998 over Orissa and 2003 over Andhra Pradesh when 2,042 and nearly 3054 people lost their lives respectively. In summer of 2005, though severe heat wave conditions were experienced for some days over Orissa and adjoining east coasts, the damages were not high as before. In view of such extreme temperature events have been regularly affected the region during the period where their normal frequency is low, analyses of their long period temperature data and study of their relationship with various regional and global ocean-atmospheric features are very much necessary, to find possible causes and then use them in forecasting. In the present study, an attempt has been made to analyze various temperature time series as available, varying from large domain to small domain, e.g., all India temperature, east coast of India temperature etc., to understand whether years which had recorded extreme temperatures in these larger domains have any relationship with that occurred over its very smaller domain, e.g., Orissa from station data, of which later is a part. To understand the relation between the magnitude of heat indices and loss to total human lives it caused during respective whole periods of heat waves, different heat indices, viz., general heat indices, Thom’s discomfort and Webb’s comfort indices have been computed during these extreme years over Orissa and Andhra Pradesh states and compared with total heat wave related human deaths over the respective states for the corresponding years. In addition to various heat indices, various Ocean-atmospheric characteristics, e.g., monthly SST over Bay of Bengal, day-to-day synoptic flow pattern, recurving Cyclonic Storms which strengthen low-level westerly and prohibit onset of Sea breeze over the coastal stations in the region causing persistent of heat waves, have also been critically analyzed both spatially and temporally to find role of these features in such occurrences. Their statistical lag correlations if any with ensuing temperature rise have been tested to explore the possibility of using them in forecasting these events much in advance.


2022 ◽  
Author(s):  
Peter Hitchcock ◽  
Amy Butler ◽  
Andrew Charlton-Perez ◽  
Chaim Garfinkel ◽  
Tim Stockdale ◽  
...  

Abstract. Major disruptions of the winter season, high-latitude, stratospheric polar vortices can result in stratospheric anomalies that persist for months. These sudden stratospheric warming events are recognized as an important potential source of forecast skill for surface climate on subseasonal to seasonal timescales. Realizing this skill in operational subseasonal forecast models remains a challenge, as models must capture both the evolution of the stratospheric polar vortices in addition to their coupling to the troposphere. The processes involved in this coupling remain a topic of open research. We present here the Stratospheric Nudging And Predictable Surface Impacts (SNAPSI) project. SNAPSI is a new model intercomparison protocol designed to study the role of the Arctic and Antarctic stratospheric polar vortices in sub-seasonal to seasonal forecast models. Based on a set of controlled, subseasonal, ensemble forecasts of three recent events, the protocol aims to address four main scientific goals. First, to quantify the impact of improved stratospheric forecasts on near-surface forecast skill. Second, to attribute specific extreme events to stratospheric variability. Third, to assess the mechanisms by which the stratosphere influences the troposphere in the forecast models, and fourth, to investigate the wave processes that lead to the stratospheric anomalies themselves. Although not a primary focus, the experiments are furthermore expected to shed light on coupling between the tropical stratosphere and troposphere. The output requested will allow for a more detailed, process-based community analysis than has been possible with existing databases of subseasonal forecasts.


2021 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Eun-Hye Lee ◽  
Seung-Ki Min

Abstract The frequency and duration of extreme heat events, including heat waves (HWs, daytime hot extremes) and tropical night (TNs), are increasing significantly as the climate warms, adversely affecting human health, agriculture, and energy consumption. Although many detection and attribution studies have examined extreme heat events, the underlying mechanisms associated with the recent increase in HWs and TNs remain unclear. In this study, we analyze the controlling factors behind the distinct increases in HW and TN events over the Northern Hemisphere during boreal summer (June to August). We found that the occurrence of HW events has been increasing gradually since 1980, mostly due to anthropogenic forcing. However, the occurrence of TN events increased abruptly during the late 1990s and has changed little since then. We demonstrate that this sudden increase in TN events is closely associated with low frequency variability in sea surface temperature, including the Pacific Decadal Oscillation, indicating its natural origin. We further found that CMIP5 climate models fail to capture the observed non-linear increases in TN events, implying potentially large uncertainty in future projections of nighttime heat events and its impacts on human society and ecosystem.


2021 ◽  
Vol 13 (6) ◽  
pp. 3534
Author(s):  
Hee Jin Yang ◽  
Heeyeun Yoon

This study aims to provide an in-depth understanding of what motivates older adults to take their adaptive behaviors during extreme heat events. Elaborating the mediating role of emotion in human behaviors, we empirically explore an interrelationship between individuals’ cognition, emotion, and heat-protective action in response to heat warning system alarms. Through face-to-face surveys and structural equation modeling, this study reveals that an increased level of cognition about climate change, heat waves, and local policy measures leads to emotional responses such as concern and worry, and consequently encourages people to comply with heat-related public guidelines. Furthermore, we also consider individuals’ pre-existing health conditions and their previous experiences of heat-related illnesses together with the emotional factors. The role of emotion in mediating between cognition and heat-protective action is much greater than in mediating between pre-existing health conditions and heat-protective action. We conclude that policy interventions to educate older adults can effectively increase the likelihood of individual compliance with the relevant preventive measures beyond their individual health and experiences.


Author(s):  
Apolline Saucy ◽  
Martina S. Ragettli ◽  
Danielle Vienneau ◽  
Kees de Hoogh ◽  
Louise Tangermann ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 24
Author(s):  
Mariano Catanesi ◽  
Giulia Caioni ◽  
Vanessa Castelli ◽  
Elisabetta Benedetti ◽  
Michele d’Angelo ◽  
...  

Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs’ neuroprotective potential for neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. We will describe these marine compounds’ potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.


2021 ◽  
Author(s):  
Alexander Gershunov ◽  
Janin Guzman Morales ◽  
Benjamin Hatchett ◽  
Kristen Guirguis ◽  
Rosana Aguilera ◽  
...  

AbstractSanta Ana winds (SAWs) are associated with anomalous temperatures in coastal Southern California (SoCal). As dry air flows over SoCal’s coastal ranges on its way from the elevated Great Basin down to sea level, all SAWs warm adiabatically. Many but not all SAWs produce coastal heat events. The strongest regionally averaged SAWs tend to be cold. In fact, some of the hottest and coldest observed temperatures in coastal SoCal are linked to SAWs. We show that hot and cold SAWs are produced by distinct synoptic dynamics. High-amplitude anticyclonic flow around a blocking high pressure aloft anchored at the California coast produces hot SAWs. Cold SAWs result from anticyclonic Rossby wave breaking over the northwestern U.S. Hot SAWs are preceded by warming in the Great Basin and dry conditions across the Southwestern U.S. Precipitation over the Southwest, including SoCal, and snow accumulation in the Great Basin usually precede cold SAWs. Both SAW flavors, but especially the hot SAWs, yield low relative humidity at the coast. Although cold SAWs tend to be associated with the strongest winds, hot SAWs tend to last longer and preferentially favor wildfire growth. Historically, out of large (> 100 acres) SAW-spread wildfires, 90% were associated with hot SAWs, accounting for 95% of burned area. As health impacts of SAW-driven coastal fall, winter and spring heat waves and impacts of smoke from wildfires have been recently identified, our results have implications for designing early warning systems. The long-term warming trend in coastal temperatures associated with SAWs is focused on January–March, when hot and cold SAW frequency and temperature intensity have been increasing and decreasing, respectively, over our 71-year record.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Harper L. Simmons ◽  
John Hargrove ◽  
Jim Thomson ◽  
Thomas Peacock ◽  
...  

AbstractUnprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.


2021 ◽  
Author(s):  
Ignazio Giuntoli ◽  
Federico Fabiano ◽  
Susanna Corti

AbstractSeasonal predictions in the Mediterranean region have relevant socio-economic implications, especially in the context of a changing climate. To date, sources of predictability have not been sufficiently investigated at the seasonal scale in this region. To fill this gap, we explore sources of predictability using a weather regimes (WRs) framework. The role of WRs in influencing regional weather patterns in the climate state has generated interest in assessing the ability of climate models to reproduce them. We identify four Mediterranean WRs for the winter (DJF) season and explore their sources of predictability looking at teleconnections with sea surface temperature (SST). In particular, we assess how SST anomalies affect the WRs frequencies during winter focussing on the two WRs that are associated with the teleconnections in which the signal is more intense: the Meridional and the Anticyclonic regimes. These sources of predictability are sought in five state-of-the-art seasonal forecasting systems included in the Copernicus Climate Change Services (C3S) suite finding a weaker signal but an overall good agreement with reanalysis data. Finally, we assess the ability of the C3S models in reproducing the reanalysis data WRs frequencies finding that their moderate skill increases during ENSO intense years, indicating that this teleconnection is well reproduced by the models and yields improved predictability in the Mediterranean region.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mahamat Abdelkerim Issa ◽  
Fateh Chebana ◽  
Pierre Masselot ◽  
Céline Campagna ◽  
Éric Lavigne ◽  
...  

Abstract Background Many countries have developed heat-health watch and warning systems (HHWWS) or early-warning systems to mitigate the health consequences of extreme heat events. HHWWS usually focuses on the four hottest months of the year and imposes the same threshold over these months. However, according to climate projections, the warm season is expected to extend and/or shift. Some studies demonstrated that health impacts of heat waves are more severe when the human body is not acclimatized to the heat. In order to adapt those systems to potential heat waves occurring outside the hottest months of the season, this study proposes specific health-based monthly heat indicators and thresholds over an extended season from April to October in the northern hemisphere. Methods The proposed approach, an adoption and extension of the HHWWS methodology currently implemented in Quebec (Canada). The latter is developed and applied to the Greater Montreal area (current population 4.3 million) based on historical health and meteorological data over the years. This approach consists of determining excess mortality episodes and then choosing monthly indicators and thresholds that may involve excess mortality. Results We obtain thresholds for the maximum and minimum temperature couple (in °C) that range from (respectively, 23 and 12) in April, to (32 and 21) in July and back to (25 and 13) in October. The resulting HHWWS is flexible, with health-related thresholds taking into account the seasonality and the monthly variability of temperatures over an extended summer season. Conclusions This adaptive and more realistic system has the potential to prevent, by data-driven health alerts, heat-related mortality outside the typical July–August months of heat waves. The proposed methodology is general and can be applied to other regions and situations based on their characteristics.


Sign in / Sign up

Export Citation Format

Share Document