Estimating emissions of methane and carbon dioxide sources using analytical Bayesian inversion system based on WRF-GHG tagged tracer simulations

Author(s):  
Michał Gałkowski ◽  
Julia Marshall ◽  
Frank-Thomas Koch ◽  
Jinxuan Chen ◽  
Alina Fiehn ◽  
...  

<p>During May and June 2018, the intensive campaign CoMet (Carbon dioxide and Methane mission) made atmospheric measurements of greenhouse gases over Europe, with the upper Silesian coal basin (USCB) in southern Poland as a specific focus area. CoMet aimed at characterising the distribution of CH<sub>4</sub> and CO<sub>2</sub> over significant regional sources with the use of a fleet of research aircraft, as well as to validate remote sensing measurements from state-of-the-art instrumentation installed on-board against a set of independent in-situ observations.</p><p>In order to link atmospheric mixing ratios to source emission rates, high-resolution simulations with WRF-GHG v 3.9.1.1. (10 km x10 km Europe + nested 2 km x 2 km domain over the USCB), driven by short-term meteorological forecasts from the ECMWF IFS model and forecasts from CAMS (Copernicus Atmospheric Monitoring Service) for initial and lateral tracer boundary conditions were performed. Biogenic fluxes of CO2 were calculated online using the VPRM model driven by MODIS indices. Anthropogenic emissions over Europe were taken from the database of TNO, Department of Climate, Air and Sustainability (7 km x 7 km), augmented with an internal emissions database developed within CoMet that uses coal mine ventilation shaft emission measurements in combination with recent updates of the E-PRTR (European Pollutant Release and Transfer Register).</p><p>Tagged tracers were used to simulate a robust set of over 100 distinct anthropogenic sources of CH<sub>4</sub> and CO<sub>2</sub> from the study area, and these forward simulations were then used as the transport operator in an analytical Bayesian inversion system. Here we discuss the results of an analysis performed with the use of selected in-situ data measured over the course of the three-week campaign, including results and sensitivity tests.</p>

2008 ◽  
Vol 8 (1) ◽  
pp. 1549-1588 ◽  
Author(s):  
R. Macatangay ◽  
T. Warneke ◽  
C. Gerbig ◽  
S. Körner ◽  
R. Ahmadov ◽  
...  

Abstract. A framework that allows validating CO2 column averaged volume mixing ratios (VMRs) retrieved from ground-based solar absorption measurements using Fourier transform infrared spectrometry (FTS) against measurements made in-situ (such as from aircrafts and tall towers) has been developed. Since in-situ measurements are done frequently and at high accuracy on the global calibration scale, linking this scale with FTS total column retrievals ultimately provides a calibration scale for remote sensing. FTS, tower and aircraft data were analyzed from measurements during the CarboEurope Regional Experiment Strategy (CERES) from May to June 2005 in Biscarrosse, France. Carbon dioxide VMRs from the MetAir Dimona aircraft, the TM3 global transport model and Observations of the Middle Stratosphere (OMS) balloon based experiments were combined and integrated to compare with FTS measurements. The comparison agrees fairly well with differences resulting from the spatial variability of CO2 around the FTS as measured by the aircraft. Additionally, the Stochastic Time Inverted Lagrangian Transport (STILT) model served as a "transfer standard" between the in-situ data measured at a co-located tower and the remotely sensed data from the FTS. The variability of carbon dioxide VMRs was modeled well by STILT with differences coming partly from uncertainties in the spatial variation of carbon dioxide.


2018 ◽  
Vol 11 (2) ◽  
pp. 721-739 ◽  
Author(s):  
Thomas Krings ◽  
Bruno Neininger ◽  
Konstantin Gerilowski ◽  
Sven Krautwurst ◽  
Michael Buchwitz ◽  
...  

Abstract. Reliable techniques to infer greenhouse gas emission rates from localised sources require accurate measurement and inversion approaches. In this study airborne remote sensing observations of CO2 by the MAMAP instrument and airborne in situ measurements are used to infer emission estimates of carbon dioxide released from a cluster of coal-fired power plants. The study area is complex due to sources being located in close proximity and overlapping associated carbon dioxide plumes. For the analysis of in situ data, a mass balance approach is described and applied, whereas for the remote sensing observations an inverse Gaussian plume model is used in addition to a mass balance technique. A comparison between methods shows that results for all methods agree within 10 % or better with uncertainties of 10 to 30 % for cases in which in situ measurements were made for the complete vertical plume extent. The computed emissions for individual power plants are in agreement with results derived from emission factors and energy production data for the time of the overflight.


2018 ◽  
Vol 18 (22) ◽  
pp. 16729-16745 ◽  
Author(s):  
Stefan Kaufmann ◽  
Christiane Voigt ◽  
Romy Heller ◽  
Tina Jurkat-Witschas ◽  
Martina Krämer ◽  
...  

Abstract. Accurate measurement of water vapor in the climate-sensitive region near the tropopause is very challenging. Unexplained systematic discrepancies between measurements at low water vapor mixing ratios made by different instruments on airborne platforms have limited our ability to adequately address a number of relevant scientific questions on the humidity distribution, cloud formation and climate impact in that region. Therefore, during the past decade, the scientific community has undertaken substantial efforts to understand these discrepancies and improve the quality of water vapor measurements. This study presents a comprehensive intercomparison of airborne state-of-the-art in situ hygrometers deployed on board the DLR (German Aerospace Center) research aircraft HALO (High Altitude and LOng Range Research Aircraft) during the Midlatitude CIRRUS (ML-CIRRUS) campaign conducted in 2014 over central Europe. The instrument intercomparison shows that the hygrometer measurements agree within their combined accuracy (±10 % to 15 %, depending on the humidity regime); total mean values agree within 2.5 %. However, systematic differences on the order of 10 % and up to a maximum of 15 % are found for mixing ratios below 10 parts per million (ppm) H2O. A comparison of relative humidity within cirrus clouds does not indicate a systematic instrument bias in either water vapor or temperature measurements in the upper troposphere. Furthermore, in situ measurements are compared to model data from the European Centre for Medium-Range Weather Forecasts (ECMWF) which are interpolated along the ML-CIRRUS flight tracks. We find a mean agreement within ±10 % throughout the troposphere and a significant wet bias in the model on the order of 100 % to 150 % in the stratosphere close to the tropopause. Consistent with previous studies, this analysis indicates that the model deficit is mainly caused by too weak of a humidity gradient at the tropopause.


2014 ◽  
Vol 7 (11) ◽  
pp. 3839-3847 ◽  
Author(s):  
C. S. Brauer ◽  
T. A. Blake ◽  
A. B. Guenther ◽  
S. W. Sharpe ◽  
R. L. Sams ◽  
...  

Abstract. Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm−1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 K in a 19.94 cm path-length cell at 0.112 cm−1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.


2012 ◽  
Vol 12 (16) ◽  
pp. 7371-7389 ◽  
Author(s):  
M. Pommier ◽  
C. Clerbaux ◽  
K. S. Law ◽  
G. Ancellet ◽  
P. Bernath ◽  
...  

Abstract. Ozone data retrieved in the Arctic region from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp-A European satellite are presented. They are compared with in situ and lidar observations obtained during a series of aircraft measurement campaigns as part of the International Polar Year POLARCAT activities in spring and summer 2008. Different air masses were sampled during the campaigns including clean air, polluted plumes originating from anthropogenic sources, forest fire plumes from the three northern continents, and stratospheric-influenced air masses. The comparison between IASI O3 [0–8 km], [0–12 km] partial columns and profiles with collocated aircraft observations is achieved by taking into account the different sensitivity and geometry of the sounding instruments. A detailed analysis is provided and the agreement is discussed in terms of vertical sensitivity and surface properties at the location of the observations. Overall, IASI O3 profiles are found to be in relatively good agreement with smoothed in situ and lidar profiles in the free troposphere with differences of less than 40% (25% over sea for both seasons) and 10%, respectively. The correlation between IASI O3 retrieved partial columns and the smoothed aircraft partial columns is good with DC-8 in situ data in spring over North America (r = 0.68), and over Greenland with ATR-42 lidar measurements in summer (r = 0.67). Correlations with other data are less significant highlighting the difficulty of IASI to capture precisely the O3 variability in the Arctic upper troposphere and lower stratosphere (UTLS). This is particularly noted in comparison with the [0–12 km] partial columns. The IASI [0–8 km] partial columns display a low negative bias (by less than 26% over snow) compared to columns derived from in situ measurements. Despite the relatively high biases of the IASI retrievals in the Arctic UTLS, our analysis shows that IASI can be used to identify, using O3 / CO ratios, stratospheric intrusions.


2020 ◽  
Author(s):  
Michał Gałkowski ◽  
Armin Jordan ◽  
Michael Rothe ◽  
Julia Marshall ◽  
Frank-Thomas Koch ◽  
...  

Abstract. The intensive measurement campaign CoMet 1.0 (Carbon dioxide and Methane mission) took place during May and June 2018, with a focus on greenhouse gases over Europe. CoMet 1.0 aimed at characterising the distribution of CH4 and CO2 over significant regional sources with the use of a fleet of research aircraft, as well as validating remote sensing measurements from state-of-the-art instrumentation installed on-board against a set of independent in-situ observations. Here we present the results of over 55 hours of accurate and precise in situ measurements of CO2, CH4 and CO mixing ratios made during CoMet 1.0 flights with a cavity ring-down spectrometer aboard the German research aircraft HALO, together with results from analyses of 96 discrete air samples collected aboard the same platform. A careful in-flight calibration strategy together with post-flight quality assessment made it possible to determine both the single measurement precision as well as biases against respective WMO scales. We compare the result of greenhouse gas observations against two of the available global modelling systems, namely Jena CarboScope and CAMS (Copernicus Atmosphere Monitoring Service). We find overall good agreement between the global models and the observed mixing ratios in the free-tropospheric range, characterised by very low bias values for the CAMS CH4 and the CarboScope CO2 products, with a mean free tropospheric offset of 0 (14) ppb and 0.8 (1.3) ppm respectively, with the quoted number giving the standard uncertainty in the final digits for the numerical value. Higher bias is observed for CAMS CO2 (equal to 3.7 (1.5) ppm), and for CO the model-observation mismatch is variable with height (with offset equal to −1.0 (8.8)). We also present laboratory analyses of air samples collected throughout the flights, which include information on the isotopic composition of CH_4, and we demonstrate the potential of simultaneously measuring δ13C-CH4 and δ2H-CH4 from air to determine the sources of enhanced methane signals using even a limited amount of discrete samples. Using flasks collected during two flights over the Upper Silesian Coal Basin (USCB, southern Poland), one of the strongest methane-emitting regions in the European Union, we were able to use the Miller-Tans approach to derive the isotopic signature of the measured source, with values of δ2H equal to −224.7 (6.6) permil and δ13C to −50.9 (1.1) permil, giving significantly lower d2H values compared to previous studies in the area.


2021 ◽  
Author(s):  
Sebastian Wolff ◽  
Gerhard Ehret ◽  
Christoph Kiemle ◽  
Axel Amediek ◽  
Mathieu Quatrevalet ◽  
...  

<p>A large fraction of global anthropogenic greenhouse gas emissions originates from localized point sources. International climate treaties foresee their independent monitoring. Given the high number of point sources and their global spatial distribution, local monitoring is challenging, whereas a global satellite-based observing system is advantageous. In this perspective, a promising measurement approach is active remote sensing by airborne lidar, such as provided by the integrated-path differential-absorption lidar CHARM-F. Installed onboard the German research aircraft HALO, CHARM-F serves as a demonstrator for future satellite missions, e.g. MERLIN. CHARM-F simultaneously measures weighted vertical column mixing ratios of CO<sub>2</sub> and CH<sub>4</sub> below the aircraft. In spring 2018, during the CoMet field campaign, measurements were taken at the largest European point sources of anthropogenic CO<sub>2</sub> and CH<sub>4</sub> emissions, i.e. coal-fired power plants and ventilation shafts of coal mines. The measurement flights aimed to transect isolated exhaust plumes, in order to derive the corresponding emission rates from the resulting enhancement in concentration, along the plume crossing. For the first time, multiple measurements of power plant emissions were made using airborne lidar. On average, we find that our measurements are consistent with reported numbers, but observe high discrepancies between successive plume crossings of up to 50 %. As an explanation for these high discrepancies, we assess the influence of inhomogeneity in the exhaust plume, caused by atmospheric turbulence. This assessment is based on the Weather Research and Forecasting Model (WRF). We find a pronounced diurnal cycle of plume inhomogeneity associated with local turbulence, predominately driven by midday solar irradiance. Our results reveal that periods of high turbulence, specifically during midday and afternoon, should be avoided whenever possible. Since lidar is intrinsically independent of sun light, measurements can be performed under conditions of weak turbulence, such as at night or in the early morning.</p>


2009 ◽  
Vol 9 (2) ◽  
pp. 6979-7032
Author(s):  
M. Saunois ◽  
C. E. Reeves ◽  
C. Mari ◽  
J. G. Murphy ◽  
D. J. Stewart ◽  
...  

Abstract. A bi-dimensional latitudinal-vertical meterological model coupled with O3-NOx-VOC chemistry is used to reproduce the distribution of ozone and precursors in the boundary layer over West Africa during the African Monsoon Multidisciplinary Analysis (AMMA) campaign as observed on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft. The model reproduces the increase of ozone mixing ratios in the boundary layer observed between the forested region south of 13° N and the Sahelian area northward. Sensitivity and budget analysis reveals that the intertropical convergence zone is a moderate source of O3 rich-air in the boundary layer due to convective downdrafts. Dry deposition drives the ozone minimum over the vegetated area. The combination of high NOx emissions from soil north of 13° N and northward advection by the monsoon flux of VOC-enriched air masses contributes to the ozone maximum simulated at higher latitudes. Simulated OH exhibit a well marked latitudinal gradient with minimum concentrations over the vegetated region where the reactions with biogenic compounds predominate. The model underestimates the observed OH mixing ratios, however this model discrepancy has slight effect on ozone budget and does not alter the conclusions.


2021 ◽  
Author(s):  
Chenxi Qiu ◽  
Felix Ploeger ◽  
Jens-Uwe Grooß ◽  
Marc von Hobe

<p>Carbonyl sulfide (OCS or COS) is the longest lived and the most abundant reduced sulfur gas in the atmosphere. As chemical loss of OCS in the troposphere is slow, it can reach the stratosphere, where it is  photochemically oxidized and converted to stratospheric sulfate aerosol, being the largest source thereof in times of volcanic quiescence. Chemistry transport models show that OCS conversion occurs mainly in the ‘tropical pipe’ region, while along the lower branch of Brewer-Dobson circulation (BDC), OCS is passively transported without significant chemical loss. The OCS depleted air is transported along the upper branch of BDC and descends again at high latitudes. Using the distinct characteristics of  ‘age of air’ in the upper and lower branches of the BDC, this picture of OCS transport and especially the role of the ‘tropical pipe’ as the main region of OCS conversion can be supported by looking at the relationship between age spectra and OCS mixing ratios.</p><p>In this study, we will investigate the relation of OCS mixing ratios and mean age of air as well as mass fractions of air with different transit times using satellite-based measurements from MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) and ACE-FTS (Atmospheric Chemistry Experiment - infrared Fourier Transform Spectrometer), and age spectra of air from CLaMS (Chemical Lagrangian Model of the Stratosphere).</p><p>In addition to satellite data analysis, we will investigate the distribution of OCS in the UTLS (upper troposphere and lower stratosphere) region and its relation to the age spectra using high-resolution in-situ observations of OCS. This unique dataset was obtained during the SOUTHTRAC mission in autumn 2019 by AMICA (Airborne Mid-Infrared Cavity enhanced Absorption spectrometer) on board the HALO (High Altitude Long Range) research aircraft. Flights from the main  campaign base in Río Grande, Argentina (53.8S, 67.7W) covered a wide latitude range from 48° N to 70° S, even reaching the southern polar vortex where aged air masses having descended from high altitudes are typically found.</p><p>Our analysis of both satellite and in-situ data generally supports the established picture of OCS conversion in the ‘tropical pipe’.</p>


2020 ◽  
Author(s):  
Andrea Rau ◽  
Valentin Lauther ◽  
Johannes Wintel ◽  
Emil Gehardt ◽  
Peter Hoor ◽  
...  

<p>Over the course of the summer, when the subtropical jet is weakest, quasi-isentropic transport of young air from the troposphere and the tropical tropopause layer into the northern hemisphere (NH) lowermost stratosphere (LMS) is increased resulting in a drastic change of LMS chemical composition between spring and fall. The focus of this work is on the role of different transport paths into the NH LMS, including outflow from the Asian Monsoon, and their associated time scales of transport and mixing.<br><br>We present and analyse in situ measurements of CO<sub>2</sub> and various long-lived tracers obtained during three recent aircraft campaigns encompassing over 40 research flights in the NH UTLS during winter/spring, summer, and fall. The POLSTRACC/GW-LCYCLE/SALSA campaign probed the northern high latitude LMS in winter/spring 2016, deploying the German research aircraft HALO from Kiruna (Sweden) and from Germany. The second campaign deployed the M55 Geophysica research aircraft in July/August 2017 from Kathmandu, Nepal, in the frame of the EU-funded project StratoClim (Stratospheric and upper tropospheric processes for better Climate predications) in order to probe in situ for the first time the inside of the Asian Monsoon anticyclone. Roughly two months later the WISE (Wave-driven ISentropic Exchange) campaign deployed again HALO from Shannon (Ireland) in September and October 2017 to investigate isentropic transport and mixing in the NH LMS.<br><br>The University of Wuppertal measured CO<sub>2</sub> and a suite of long-lived tracers on each aircraft. On the Geophysica, the measurements were made with the HAGAR (High Altitude Gas AnalyzeR) instrument. On HALO, a recently developed extended 5-channel version, HAGAR-V, was flown, which in addition measured a suite of short-lived tracers by GC coupled with a mass spectrometer. The University of Mainz measured N2O and CO on HALO using laser absorption techniques. For our analysis we use mixing ratios of CO<sub>2</sub>, SF<sub>6</sub>, CFC-11, CFC-12, and N<sub>2</sub>O.<br><br>Owing to their different lifetimes, tropospheric growth (for SF<sub>6</sub>) and a seasonal cycle (for CO<sub>2</sub>), the LMS distributions of these long-lived trace gases and their development between spring and fall contain key information about the origin and mean stratospheric age of LMS air as well as time scales of rapid isentropic transport and mixing. The analysis of tracer measurements is complemented by simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) providing information on age of air spectra and fractions of origin from specific surface regions, allowing in particular to assess the role of the Asian Monsoon in determining the composition of the NH LMS in fall.</p>


Sign in / Sign up

Export Citation Format

Share Document