Thermochemical equilibrium modeling approach for carbon-rich feedstock gasification validated against laboratory and large-scale experiments

Author(s):  
Christopher Otto ◽  
Thomas Kempka

<p>In the present study, a pre-existing stoichiometric equilibrium model based on direct minimization of Gibbs free energy has been further developed and applied to estimate the equilibrium composition of synthesis gases produced by the gasification of carbon-rich feedstock (e.g., coal, municipal waste or biomass) in a fixed-bed reactor [1]. Our modeling approach is validated against thermodynamic models, laboratory gasification and demonstration-scale experiments reported in the literature. The simulated synthesis gas compositions have been found to be in good agreement under a wide range of different operating conditions. Consequently, the presented modeling approach enables an efficient quantification of synthesis gas compositions derived from feedstock gasification, considering varying feedstock and oxidizer compositions as well as pressures and temperatures. Furthermore, the developed model can be easily integrated with numerical flow and transport simulators to simulate reactive transport of a multi-componentgas phase.</p><p>[1] Otto and Kempka, Synthesis gas composition prediction for underground coal gasification using a thermochemical equilibrium modeling approach, Energies (in review)</p>

Author(s):  
Venkateswara Rao Surisetty ◽  
Janusz Kozinski ◽  
Ajay K. Dalai

The effects of operating conditions on the higher alcohols synthesis reaction from synthesis gas were studied in a single-pass tubular downflow fixed-bed reactor, using sulfided K-promoted trimetallic Co-Rh-Mo catalyst supported on multi-walled carbon nanotubes (MWCNTs). The p CO conversion increased monotonically with increasing reaction temperature (from 275 to 350°C) and pressure (from 800 to 1400 psi), while decreasing monotonically with increasing GHSV (from 2.4 to 4.2 m3 (STP)/(kg of cat./h)). To maximize the ethanol STY and selectivity, the optimum operating conditions were determined as 330°C, 1320 psi, and 3.8 m3 (STP)/kg of cat./h). Maximum ethanol STY and selectivity were obtained using gas with H2 to CO molar ratio around 1.25.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1171 ◽  
Author(s):  
Christopher Otto ◽  
Thomas Kempka

Underground coal gasification (UCG) is an in situ conversion technique that enables the production of high-calorific synthesis gas from resources that are economically not minable by conventional methods. A broad range of end-use options is available for the synthesis gas, including fuels and chemical feedstock production. Furthermore, UCG also offers a high potential for integration with Carbon Capture and Storage (CCS) to mitigate greenhouse gas emissions. In the present study, a stoichiometric equilibrium model, based on minimization of the Gibbs function has been used to estimate the equilibrium composition of the synthesis gas. Thereto, we further developed and applied a proven thermodynamic equilibrium model to simulate the relevant thermochemical coal conversion processes (pyrolysis and gasification). Our modeling approach has been validated against thermodynamic models, laboratory gasification experiments and UCG field trial data reported in the literature. The synthesis gas compositions have been found to be in good agreement under a wide range of different operating conditions. Consequently, the presented modeling approach enables an efficient quantification of synthesis gas quality resulting from UCG, considering varying coal and oxidizer compositions at deposit-specific pressures and temperatures.


2013 ◽  
Vol 11 (1) ◽  
pp. 147-158 ◽  
Author(s):  
Reza Vakili ◽  
Reza Eslamloueyan

Abstract Dimethyl ether (DME) is traditionally produced by methanol dehydration in an adiabatic reactor. Recently, a more economical method has been proposed to produce DME in a reactor in which methanol production and dehydration take place simultaneously on a bi-functional catalyst. In the present study, the design and optimization of an industrial scale fixed bed reactor for the direct synthesis of DME from syngas are investigated. A steady state, pseudo-homogeneous model has been applied to simulate the proposed reactor. At first, the preliminary design of the reactor is done based on the reactor design heuristics for industrial reactors. Then, using differential evolution (DE) algorithm as a fast and efficient optimization method, the tentative reactor operating conditions and its internal configuration are optimized. The objective of the optimization is to maximize DME production in each tube of the reactor. The number of tubes, feed inlet and coolant water temperatures are considered as decision variables of the optimization algorithm. At the optimum conditions, the reactor size decreases due to increase of CO conversion and DME productivity in each tube. The results show that the proposed optimum reactor is more economical for large-scale production of DME in comparison to the conventional industrial DME reactor.


2018 ◽  
Vol 921 ◽  
pp. 40-47
Author(s):  
Jia Ying Zhang

A comprehensive kinetic model for methanation of syngas on Ni-Mo-SiO2catalyst was developed on a fixed bed reactor data. The CO and H2conversion, methane selectivity and yield were obtained in a wide range of operating conditions including 300 < T < 450°C, 1 < H2/CO <4 and 0.1 < P < 1.5 MPa with the total weight hourly space velocity (WHSV) of 60000 ml/h/g. A 6-step reaction scheme defined to the description of a reaction network that considers both catalytic and gas-phase as well as primary and consecutive reaction steps to predict the performance of the syngas methantion. Orthogonal design method was adopted to select test points with temperature, pressure and feed compositions as factors and the kinetic rates involved Langmuir – Hinshelwood equation kinetic model. The kinetic rate parameters were estimated using the Least Square Method by MATLAB. Comparing the experimental and model predicted data showed that presented model has a reasonable fit between the experimental data and the predicted values with average absolute relative deviation of ±9.8%.


Author(s):  
Azita Barkhordari ◽  
Shohreh Fatemi ◽  
Mahdi Daneshpayeh ◽  
Hossain Zamani

Two types of kinetic modeling, continuous and discrete lump model were studied and compared in this research in order to model the industrial scale VGO hydrocracking process. The experimental data obtained from a pilot-scale fixed bed reactor over Ni-Mo/Silica-Alumina catalyst in a wide range of operating conditions was used for prediction and tuning the kinetic parameters using Genetic algorithm. In this study, the discrete lump model with four parallel reactions to four lumped products showed more convergence to the experimental data than the continuous lump model. Afterward, the discrete kinetic model was used to simulate the vacuum gas oil (VGO) industrial hydrocracking reaction accompanied by catalyst deactivation. The activity of the catalyst was taken as a time dependent variable and the first year of operational data were used to derive the deactivation parameter. The refinery test runs spanning over the last two and half years of operation were used to validate the model and interpret the simulation results. A comparison between the industrial and the predicted data showed that there is a good agreement between them and the presented model provides a reasonable fit to estimate the product yields of LPG, naphtha, kerosene, diesel.


2002 ◽  
Vol 752 ◽  
Author(s):  
Victor Diakov ◽  
Arvind Varma

ABSTRACTFor methanol oxidative dehydrogenation to formaldehyde, the performance of the packed-bed membrane reactor (PBMR) is compared with that of the conventional fixed-bed reactor (FBR) over a wide range of operating conditions. The reaction was studied in three reactor configurations: the conventional FBR and the packed-bed membrane reactor, with either methanol (PBMR-M) or oxygen (PBMR-O) as the permeating component. The kinetics of methanol and formaldehyde partial oxidation reactions were determined and incorporated in a PBMR model. Both experimental data and model considerations demonstrate that the PBMR enhances reactant conversion and selectivity.Small oscillations in CO production were observed experimentally. Their amplitude was taken as a basis for comparison of packed-bed operation instability. The likely source of oscillatory behavior is the non-uniformity in reaction conditions along the reactor. It was found that membrane distributed feed, by providing a more uniform reactor operation, is an effective remedy from these instabilities.It is found, both by simulations and experimental observations, that relative reactor performance depends strongly on the operating conditions. Using formaldehyde yield as the basis for optimization, optimal reactor performances are determined to be in the order: PBMR-O > FBR > PBMR-M. Further PBMR productivity enhancement is possible by optimizing the membrane feed distribution pattern.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2537
Author(s):  
Felix Charvet ◽  
Felipe Silva ◽  
Luís Ruivo ◽  
Luís Tarelho ◽  
Arlindo Matos ◽  
...  

Charcoal production in Portugal is mostly based on the valorization of woody residues from cork oak and holm oak, the latter being considered a reference feedstock in the market. Nevertheless, since wildfire prevention became a priority in Portugal, after the recent dramatic wildfires, urgent actions are being conducted to reduce the fuel load in the forests, which is increasing the amount of biomass that is available for valorization. Additionally, biomass residues from agriculture, forest management, control of invasive species, partially burnt wood from post-fire recovery actions, and waste wood from storm devastated forests need also to be considered within the national biomass valorization policies. This has motivated the present work on whether the carbonization process can be used to valorize alternative woody biomasses not currently used on a large scale. For this purpose, slow pyrolysis experiments were carried out with ten types of wood, using a fixed bed reactor allowing the controlled heating of large fuel particles at 0.1 to 5 °C/min and final temperatures within 300–450 °C. Apart from an evaluation of the mass balance of the process, emphasis was given to the properties of the resulting charcoals considering its major market in Portugal—barbecue charcoal for both recreational and professional purposes.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Amir Rahimi ◽  
Sogand Hamidi

In this study, the performance of a fixed–bed tubular reactor for the production of phthalic anhydride is mathematically analyzed. The conversion degree and reactor temperature values are compared with the measured one in a tubular reactor applied in Farabi petrochemical unit in Iran as well as reported data in the literature for a pilot plate. The comparisons are satisfactory. The effects of some operating parameters including reactor length, feed temperature, reactor pressure, and existence of an inert in the catalytic bed are investigated. The optimum value of each parameter is determined on the basis of the corresponding operating conditions.


Sign in / Sign up

Export Citation Format

Share Document