Measuring temporal and spatial scales of compound events in the United Kingdom

Author(s):  
Aloïs Tilloy ◽  
Bruce Malamud ◽  
Hugo Winter ◽  
Amelie Joly-Laugel

<p>Multi-hazard events have the potential to cause damages to infrastructures and people that may differ greatly from the associated risks posed by singular hazards. Interrelations between natural hazards also operate on different spatial and temporal scales than single natural hazards. Therefore, the measure of spatial and temporal scales of natural hazard interrelations still remain challenging. The objective of this study is to refine and measure temporal and spatial scales of natural hazards and their interrelations by using a spatiotemporal clustering technique. To do so, spatiotemporal information about natural hazards are extracted from the ERA5 climate reanalysis. We focus here on the interrelation between two natural hazards (extreme precipitation and extreme wind gust) during the period 1969-2019 within a region including Great Britain and North-West France. The characteristics of our input data (i.e. important size, high noise level) and the absence of assumption about the shape of our hazard clusters guided the choice of a clustering algorithm toward the DBSCAN clustering algorithm. To create hazard clusters, we retain only extreme values (above the 99% quantile) of precipitation and wind gust. We analyse the characteristics (eg., size, duration, season, intensity) of single and compound events of rain and wind impacting our study area. We then measure the impact of the spatial and temporal scales defined in this study on the nature of the interrelation between extreme rainfall and extreme wind in the UK. We therefore demonstrate how this methodology can be applied to a different set of natural hazards.</p>

Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1138
Author(s):  
Chunhong Dou ◽  
Jinshan Lin

Vibration data from rotating machinery working in different conditions display different properties in spatial and temporal scales. As a result, insights into spatial- and temporal-scale structures of vibration data of rotating machinery are fundamental for describing running conditions of rotating machinery. However, common temporal statistics and typical nonlinear measures have difficulties in describing spatial and temporal scales of data. Recently, statistical linguistic analysis (SLA) has been pioneered in analyzing complex vibration data from rotating machinery. Nonetheless, SLA can examine data in spatial scales but not in temporal scales. To improve SLA, this paper develops symbolic-dynamics entropy for quantifying word-frequency series obtained by SLA. By introducing multiscale analysis to SLA, this paper proposes adaptive multiscale symbolic-dynamics entropy (AMSDE). By AMSDE, spatial and temporal properties of data can be characterized by a set of symbolic-dynamics entropy, each of which corresponds to a specific temporal scale. Afterward, AMSDE is employed to deal with vibration data from defective gears and rolling bearings. Moreover, the performance of AMSDE is benchmarked against five common temporal statistics (mean, standard deviation, root mean square, skewness and kurtosis) and three typical nonlinear measures (approximate entropy, sample entropy and permutation entropy). The results suggest that AMSDE performs better than these benchmark methods in characterizing running conditions of rotating machinery.


2020 ◽  
Vol 12 (9) ◽  
pp. 1500 ◽  
Author(s):  
Qiang Zhang ◽  
Zixuan Wu ◽  
Huiqian Yu ◽  
Xiudi Zhu ◽  
Zexi Shen

Urbanization is mainly characterized by the expansion of impervious surface (IS) and hence modifies hydrothermal properties of the urbanized areas. This process results in rising land surface temperature (LST) of the urbanized regions, i.e., urban heat island (UHI). Previous studies mainly focused on relations between LST and IS over individual city. However, because of the spatial heterogeneity of UHI from individual cities to urban agglomerations and the influence of relevant differences in climate background across urban agglomerations, the spatial-temporal scale independence of the IS-LST relationship still needs further investigation. In this case, based on Landsat-8 Operational Land Imager and Thermal Infrared Sensor (Landsat 8 OLI/TIRS) remote sensing image and multi-source remote sensing data, we extracted IS using VrNIR-BI (Visible red and NIR-based built-up Index) and calculated IS density across three major urban agglomerations across eastern China, i.e., the Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) to investigate the IS-LST relations on different spatial and temporal scales and clarify the driving factors of LST. We find varying warming effects of IS on LST in diurnal and seasonal sense at different time scales. Specifically, the IS has stronger impacts on increase of LST during daytime than during nighttime and stronger impacts on increase of LST during summer than during winter. On different spatial scales, more significant enhancing effects of IS on LST can be observed across individual city than urban agglomerations. The Pearson correlation coefficient (r) between IS and LST at the individual urbanized region can be as high as 0.94, indicating that IS can well reflect LST changes within individual urbanized region. However, relationships between IS and LST indicate nonlinear effects of IS on LST. Because of differences in spatial scales, latitudes, and local climates, we depicted piecewise linear relations between IS and LST across BTH when the IS density was above 10% to 17%. Meanwhile, linear relations still stand between IS density and LST across YRD and PRD. Besides, the differences in the IS-LST relations across urban agglomeration indicate more significant enhancing effects of IS on LST across PRD than YRD and BTH. These findings help to enhance human understanding of the warming effects of urbanization or UHI at different spatial and temporal scales and is of scientific and practical merits for scientific urban planning.


2011 ◽  
Vol 69 ◽  
pp. 101-116 ◽  
Author(s):  
J. Baird Callicott

Here I argue that the hyper-individualistic and rationalistic ethical paradigms – originating in the late eighteenth century and dominating moral philosophy, in various permutations, ever since – cannot capture the moral concerns evoked by the prospect of global climate change. Those paradigms are undone by the temporal and spatial scales of climate change. To press my argument, I deploy two famous philosophical tropes – John Rawls's notion of the original position and Derek Parfit's paradox – and another that promises to become famous: Dale Jamieson's six little ditties about Jack and Jill. I then go on to argue that the spatial and especially the temporal scales of global climate change demand a shift in moral philosophy from a hyper-individualistic ontology to a thoroughly holistic ontology. It also demands a shift from a reason-based to a sentiment-based moral psychology. Holism in environmental ethics is usually coupled with non-anthropocentrism in theories constructed to provide moral considerability for transorganismic entities – such as species, biotic communities, and ecosystems. The spatial and temporal scales of climate, however, render non-anthropocentric environmental ethics otiose, as I more fully explain. Thus the environmental ethic here proposed to meet the moral challenge of global climate change is holistic but anthropocentric. I start with Jamieson's six little ditties about Jack and Jill.


2020 ◽  
Author(s):  
Amanda T. Nylund ◽  
Lars Arneborg ◽  
Anders Tengberg ◽  
Ulf Mallast ◽  
Ida-Maja Hassellöv

Abstract. In areas of intensive ship traffic, ships pass every ten minutes. Considering the amount of ship traffic and the fact that global maritime trade is predicted to increase, there is a need to consider all effects shipping has on the marine environment; both pollution and physical disturbances. This paper studies a previously disregarded physical disturbance, namely ship-induced vertical mixing in the turbulent wake. A characterization of the temporal and spatial scales of the turbulent wake is needed to estimate its effect on gas exchange, dispersion of pollutants, and to identify in which areas ship-induced vertical mixing could have an impact on local biogeochemical cycles. There is a lack of field measurements of turbulent wakes of real-size ships, and this study addresses that gap by in situ and ex situ measurements of the depth, width, length, intensity and longevity of the turbulent wake for ~240 ship passages of differently sized ships. A bottom-mounted Acoustic Doppler Current Profiler (ADCP) was placed at 32 m depth below the ship lane outside Gothenburg harbour, and used to measure wake depth and temporal longevity. Thermal satellite images of the Thermal Infrared Sensor (TIRS) onboard Landsat 8 were used to measure thermal wake width and spatial longevity, using satellite scenes from the major ship lane North of Bornholm, Baltic Sea. Automatic Information System (AIS) records from both the investigated areas were used to identify the ships inducing the wakes. The results from the ADCP measurements show median wake depths of ~ 10 m, and several occasions of wakes reaching depths > 18 m. The temporal longevity of the wakes had a median of around 8 min and several passages of > 20 min. The satellite analysis showed a median thermal wake length of 13.7 km, and the longest wake extended over 60 km, which would correspond to a temporal longevity of 1 h 42 min (for a ship speed of 20 knots). The median thermal wake width was 157.5 m. The measurements of the spatial and temporal scales are in line with previous studies, but the deep mixing and extensive longevity presented in this study, has not previously been documented. The results from this study have shown that ship-induced vertical mixing occurs at temporal and spatial scales large enough to imply that this process should be considered when estimating environmental impact from shipping in areas with intense ship traffic. Moreover, the possibility that deep vertical mixing could occur in a highly frequent manner highlights the need of further studies to better characterize the spatial and temporal development of the turbulent wake.


Author(s):  
Edward Bormashenko

The review is devoted to the physical, chemical and technological aspects of the breath-figures self-assembly process. Main stages of the process and the impact of the polymer architecture and physical parameters of the breath-figures self-assembly on the eventual pattern are covered. The review is focused on the hierarchy of spatial and temporal scales inherent for the breath-figures self-assembly. Multi-scale patterns arising from the process are addressed. The characteristic spatial lateral scales of patterns vary from nanometers to dozens of micrometers. The temporal scales of the process span from micro-seconds to seconds. The qualitative analysis performed in the paper demonstrates that the process is mainly governed by the interfacial phenomena, whereas the impact of inertia and gravity is negligible. Characterization and applications of polymer films manufactured with breath-figures self-assembly are discussed.


2017 ◽  
Author(s):  
Ryann E Rossi

Detection of disease over broad spatial scales is important to managing the spread of many diseases. One way to do this is to work with citizen scientists to collect data over broad spatial and temporal scales. Citizen science observations are becoming more widely available through web and app interfaces such as iNaturalist.org. iNaturalist.org provides passive sampling of organisms through photographs with a geolocation. These observations are often used to examine biodiversity and species monitoring, but, disease detection is also possible. Here, I demonstrate the utility of using iNaturlist.org observations of red mangrove to detect foliar disease symptoms such as lesions. I downloaded observations of red mangrove from iNaturalist.org, filtered them and examined images for foliar disease symptoms. Out of 153 filtered images, I found that 42% showed no signs of foliar disease while 58% did show foliar disease symptoms. I also found that observations of red mangrove were recorded from 15 countries in total, with 11 countries having at least one observation with foliar disease symptoms present. While small, this study demonstrates the utility of using resources such as iNaturalist.org to obtain preliminary disease observations which can be used to further focus in person disease surveys and sampling.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Gioele Passoni ◽  
Tim Coulson ◽  
Nathan Ranc ◽  
Andrea Corradini ◽  
A. J. Mark Hewison ◽  
...  

Abstract Background Human disturbance alters animal movement globally and infrastructure, such as roads, can act as physical barriers that impact behaviour across multiple spatial scales. In ungulates, roads can particularly hamper key ecological processes such as dispersal and migration, which ensure functional connectivity among populations, and may be particularly important for population performance in highly human-dominated landscapes. The impact of roads on some aspects of ungulate behaviour has already been studied. However, potential differences in response to roads during migration, dispersal and home range movements have never been evaluated. Addressing these issues is particularly important to assess the resistance of European landscapes to the range of wildlife movement processes, and to evaluate how animals adjust to anthropogenic constraints. Methods We analysed 95 GPS trajectories from 6 populations of European roe deer (Capreolus capreolus) across the Alps and central Europe. We investigated how roe deer movements were affected by landscape characteristics, including roads, and we evaluated potential differences in road avoidance among resident, migratory and dispersing animals (hereafter, movement modes). First, using Net Squared Displacement and a spatio-temporal clustering algorithm, we classified individuals as residents, migrants or dispersers. We then identified the start and end dates of the migration and dispersal trajectories, and retained only the GPS locations that fell between those dates (i.e., during transience). Finally, we used the resulting trajectories to perform an integrated step selection analysis. Results We found that roe deer moved through more forested areas during the day and visited less forested areas at night. They also minimised elevation gains and losses along their movement trajectories. Road crossings were strongly avoided at all times of day, but when they occurred, they were more likely to occur during longer steps and in more forested areas. Road avoidance did not vary among movement modes and, during dispersal and migration, it remained high and consistent with that expressed during home range movements. Conclusions Roads can represent a major constraint to movement across modes and populations, potentially limiting functional connectivity at multiple ecological scales. In particular, they can affect migrating individuals that track seasonal resources, and dispersing animals searching for novel ranges.


2021 ◽  
Vol 8 (6) ◽  
pp. 201847
Author(s):  
Dorice Agol ◽  
Hannah Reid ◽  
Florence Crick ◽  
Hausner Wendo

Healthy ecosystems such as forests and wetlands have a great potential to support adaptation to climate change and are the foundation of sustainable livelihoods. Ecosystem-based adaptation (EbA) can help to protect and maintain healthy ecosystems providing resilience against the impacts of climate change. This paper explores the role of EbA in reconciling socio-economic development with the conservation and restoration of nature in Lake Victoria Basin, Kenya, East Africa. Using selected ecosystems in the Lake region, the paper identifies key EbA approaches and explores trade-offs and synergies at spatial and temporal scales and between different stakeholders. The research methods used for this study include site visits, key informant interviews, focus group discussions, participatory workshops and literature reviews. An analytical framework is applied to advance the understanding of EbA approaches and how they lead to synergies and trade-offs between ecosystem services provision at spatial and temporal scales and multiple stakeholders. Our results show that EbA approaches such as ecosystem restoration have the potential to generate multiple adaptation benefits as well as synergies and trade-offs occurring at different temporal and spatial scales and affecting various stakeholder groups. Our paper underscores the need to identify EbA trade-offs and synergies and to explore the ways in which they are distributed in space and time and between different stakeholders to design better environmental and development programmes.


2007 ◽  
Vol 362 (1484) ◽  
pp. 1267-1279 ◽  
Author(s):  
Kevin K Parker ◽  
Donald E Ingber

The spatial and temporal scales of cardiac organogenesis and pathogenesis make engineering of artificial heart tissue a daunting challenge. The temporal scales range from nanosecond conformational changes responsible for ion channel opening to fibrillation which occurs over seconds and can lead to death. Spatial scales range from nanometre pore sizes in membrane channels and gap junctions to the metre length scale of the whole cardiovascular system in a living patient. Synchrony over these scales requires a hierarchy of control mechanisms that are governed by a single common principle: integration of structure and function. To ensure that the function of ion channels and contraction of muscle cells lead to changes in heart chamber volume, an elegant choreography of metabolic, electrical and mechanical events are executed by protein networks composed of extracellular matrix, transmembrane integrin receptors and cytoskeleton which are functionally connected across all size scales. These structural control networks are mechanoresponsive, and they process mechanical and chemical signals in a massively parallel fashion, while also serving as a bidirectional circuit for information flow. This review explores how these hierarchical structural networks regulate the form and function of living cells and tissues, as well as how microfabrication techniques can be used to probe this structural control mechanism that maintains metabolic supply, electrical activation and mechanical pumping of heart muscle. Through this process, we delineate various design principles that may be useful for engineering artificial heart tissue in the future.


2020 ◽  
Author(s):  
Scott Janz ◽  
Matthew Kowalewski ◽  
Lok Lamsal ◽  
Laura Judd ◽  
Caroline Nowlan ◽  
...  

<p>Next generation air quality sensors are currently planned to launch within the next couple of years. The Tropospheric Emissions: Monitory of Pollution (TEMPO-United States) and Geostationary Environment Monitoring Sensor (GEMS-South Korea) are two such missions that will probe the boundary layer/lower troposphere at unprecedented spatial and temporal scales. These missions are designed to provide constraints on chemical forecast models and specifically to answer the question: "What are the temporal and spatial variations of emissions of gases and aerosols important for air quality and climate?" In preparation for these missions a number of airborne air quality field missions have been performed to collect data at similar spatial and temporal scales, and during relevant seasonal air quality episodes including fires. This data is being used to improve the trace gas retrieval algorithms and explore the unique spatial scales and diurnal patterns that will be encountered when the geostationary experiments are operational. This overview will present details of two of the instruments used during these campaigns, the GeoCAPE Airborne Simulator (GCAS) and the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTASO) instruments. Maintained at the Goddard Space Flight Center's Radiometric Calibration and Development Facility (RCDF), these instruments are similar in design and sensitivty to what will be measured on-orbit by the TEMPO and GEMS sensors. Results of the retrieval of high spatial resolution nitrogen dioxide and formaldehyde will presented. Examples of vertical column retrievals will be presented under various source/weather conditions as well as the uncertainties that result from both instrument and radiative transfer assumptions.</p>


Sign in / Sign up

Export Citation Format

Share Document