Estimation of flood loss functions by activity sectors in the Pamplona metropolitan area in Spain by using insurance flood direct damage data

Author(s):  
Luis Mediero ◽  
Enrique Soriano ◽  
David Santillán ◽  
Luis Cueto-Felgueroso ◽  
Luis Garrote

<p>Flood risk assessment studies require information about direct damages that depend on several variables, such as water depth, water velocity, flood duration, activity sector and type of building, among others. However, loss functions are usually simplified through flow depth-direct damage curves. Direct flood damages driven by a given flood event can be estimated directly from such loss functions by using either known or estimated water depths.</p><p>In his study, flow depth-direct damage curves are estimated for a set of activity sectors in the Pamplona metropolitan area located in the northern part of Spain, within the activities of the EIT Climate-KIC SAFERPLACES project. A dataset containing all flood direct damages in the Pamplona metropolitan area in the period 1996-2018 were supplied by the Spanish ‘Consorcio de Compensación de Seguros’ (CSC), benefiting from the fact that CSC is the insurance company that covers all damages produced by natural hazards in Spain. Flood direct damages are classified by activity sectors and postal codes. In addition, observed streamflow data at a set of gauging sites in the Ulzama and Arga rivers were supplied by both the Ebro River Basin Authority and the Regional Government of Navarre. A set of seven flood events with both streamflow and direct damage data available were selected. Flood hydrographs in the Arga River at Pamplona were obtained with a temporal resolution of 15 minutes. The Regional Government of Navarre supplied the real flood extensions for a set of flood events. With such real flood extensions, the two-dimensional hydrodynamic IBER model was calibrated. Flood extensions and water depths with a spatial resolution of 1 m were estimated with the calibrated hydrodynamic model for the seven flood events. Combining the dataset of direct damages with standard flow depth-direct damage curves and with water depths simulated by the hydrodynamic model, flood depth-damage curves were estimated by municipalities and postal codes. Such curves were obtained for activity sectors, considering residential, commercial and industrial assets.</p><p><strong>Acknowledgments</strong></p><p>This study was supported by the project SAFERPLACES funded by the EIT Climate-KIC. The authors also acknowledge the ‘Consorcio de Compensación de Seguros’ for providing the flood direct damage dataset and the Regional Government of Navarre for providing the real flood extensions for given flood events.</p>

2021 ◽  
Author(s):  
Sunna Kupfer ◽  
Sara Santamaria-Aguilar ◽  
Lara van Niekerk ◽  
Melanie Lück-Vogel ◽  
Athanasios Vafeidis

Abstract. Recent studies have drawn special attention to the significant dependencies between flood drivers and the occurrence of compound flood events in coastal areas. This study investigates compound flooding from tides, river discharge (Q) and specifically waves using a hydrodynamic model at Breede Estuary, South Africa. We quantify vertical and horizontal differences in flood characteristics caused by driver interaction, and assess the contribution of waves. Therefore, we compare flood characteristics resulting from compound flood scenarios to those in which single drivers are omitted. We find that flood characteristics are more sensitive to Q than to waves, particularly when the latter only coincide with high spring tides. When interacting with Q, however, the contribution of waves is high, causing 10–12 % larger flood extents and 45–85 cm higher water depths, as waves caused backwater effects and raised water levels inside the lower reaches of the estuary. With higher wave intensity, the first flooding began up to 12 hours earlier. Our findings provide insights on compound flooding in terms of flood magnitude and timing at a South African estuary and demonstrate the need to account for the effects of compound events, including waves, in future flood impact assessments of open South African estuaries.


2013 ◽  
Vol 13 (11) ◽  
pp. 3063-3081 ◽  
Author(s):  
H. Cammerer ◽  
A. H. Thieken ◽  
J. Lammel

Abstract. Flood loss modeling is an important component within flood risk assessments. Traditionally, stage-damage functions are used for the estimation of direct monetary damage to buildings. Although it is known that such functions are governed by large uncertainties, they are commonly applied – even in different geographical regions – without further validation, mainly due to the lack of real damage data. Until now, little research has been done to investigate the applicability and transferability of such damage models to other regions. In this study, the last severe flood event in the Austrian Lech Valley in 2005 was simulated to test the performance of various damage functions from different geographical regions in Central Europe for the residential sector. In addition to common stage-damage curves, new functions were derived from empirical flood loss data collected in the aftermath of recent flood events in neighboring Germany. Furthermore, a multi-parameter flood loss model for the residential sector was adapted to the study area and also evaluated with official damage data. The analysis reveals that flood loss functions derived from related and more similar regions perform considerably better than those from more heterogeneous data sets of different regions and flood events. While former loss functions estimate the observed damage well, the latter overestimate the reported loss clearly. To illustrate the effect of model choice on the resulting uncertainty of damage estimates, the current flood risk for residential areas was calculated. In the case of extreme events like the 300 yr flood, for example, the range of losses to residential buildings between the highest and the lowest estimates amounts to a factor of 18, in contrast to properly validated models with a factor of 2.3. Even if the risk analysis is only performed for residential areas, our results reveal evidently that a carefree model transfer in other geographical regions might be critical. Therefore, we conclude that loss models should at least be selected or derived from related regions with similar flood and building characteristics, as far as no model validation is possible. To further increase the general reliability of flood loss assessment in the future, more loss data and more comprehensive loss data for model development and validation are needed.


2021 ◽  
Author(s):  
Luis Mediero ◽  
Enrique Soriano ◽  
Peio Oria ◽  
Stefano Bagli ◽  
Attilio Castellarin ◽  
...  

<p>High-intensity and short-duration storms can generate pluvial floods in urban areas. Currently, 2D hydrodynamic models are recognised to be the best tool to simulate pluvial floods. The T-year synthetic design storm is usually assumed to generate the T-year pluvial flood. However, synthetic design storms cannot represent the variability in duration, precipitation and intensity temporal distribution of real storms that should be considered to account for their influence on water depths in pluvial floods. A more sound approach consists in estimating the T-year water depth in a given location from the frequency curve of water depths generated by a long series of possible rainfall events similar to the real storms.</p><p>However, 2D hydrodynamic models require high computation times that are not well suited with stochastic simulations. The Safer_RAIN tool is a rapid hydrostatic flood model based on a filling-and-spilling technique that has been developed within the SAFERPLACES project funded by the EIT Climate-KIC (Samela et al., 2020). Depressions and links between them are identified from a digital terrain model. The continuity equation is used to simulate how depressions are filled and spill to downstream depressions. Infiltration is simulated by using a distributed implementation of the Green and Ampt model that accounts for ponding time.</p><p>In this study, a stochastic methodology to delineate pluvial flood hazards is proposed in the Pamplona metropolitan area in Spain. First, the Safer_RAIN tool has been benchmarked by using spatially distributed high-resolution quantitative precipitation estimates (QPE) at time steps of 10 minutes for three real pluvial flood events. QPEs were obtained merging the data recorded at a set of automatic weather stations from the Spanish State Meteorological Agency (AEMET), the Regional Government of Navarre and crowdsourced networks, with continuous fields of radar observations. The Safer_RAIN tool has been benchmarked with the 2D hydrodynamic IBER model. In Barañáin, the results show a bias of -0.17–0.18 m and a RMSE of 0.22–0.49 m between water depths, as well as an accuracy correlation coefficient (ACC) of 0.87–0.99. In Zizur Mayor, the bias is -0.19–0.20 m, the RMSE is 0.29–0.55 m and the ACC is between 0.88 and 0.98.</p><p>Second, a long set of 10 000 synthetic storms has been generated by using a stochastic rainfall generator based on a bivariate copula approach fitted to data recorded at four rainfall-gauging stations located close to the case study. The 10 000 synthetic storms generated with a Gumbel copula fitted to the real rainfall events have been used as input data of the Safer_RAIN tool. Safer_RAIN preprocessing was done in 112 seconds and each simulation lasted around 45 seconds. A Generalized Pareto distribution function was fitted to the 10 000 water depth values in each cell of the grid. Pluvial flood hazard maps were obtained by estimating the T-year water depth in each cell of the grid.</p><p><strong> </strong></p><p>Samela et al. (2020). Safer_RAIN: A DEM-Based Hierarchical Filling-&-Spilling Algorithm for Pluvial Flood Hazard Assessment and Mapping across Large Urban Areas, Water, 12, 1514.</p>


2017 ◽  
Vol 21 (1) ◽  
pp. 117-132 ◽  
Author(s):  
Jannis M. Hoch ◽  
Arjen V. Haag ◽  
Arthur van Dam ◽  
Hessel C. Winsemius ◽  
Ludovicus P. H. van Beek ◽  
...  

Abstract. Large-scale flood events often show spatial correlation in neighbouring basins, and thus can affect adjacent basins simultaneously, as well as result in superposition of different flood peaks. Such flood events therefore need to be addressed with large-scale modelling approaches to capture these processes. Many approaches currently in place are based on either a hydrologic or a hydrodynamic model. However, the resulting lack of interaction between hydrology and hydrodynamics, for instance, by implementing groundwater infiltration on inundated floodplains, can hamper modelled inundation and discharge results where such interactions are important. In this study, the global hydrologic model PCR-GLOBWB at 30 arcmin spatial resolution was one-directionally and spatially coupled with the hydrodynamic model Delft 3D Flexible Mesh (FM) for the Amazon River basin at a grid-by-grid basis and at a daily time step. The use of a flexible unstructured mesh allows for fine-scale representation of channels and floodplains, while preserving a coarser spatial resolution for less flood-prone areas, thus not unnecessarily increasing computational costs. In addition, we assessed the difference between a 1-D channel/2-D floodplain and a 2-D schematization in Delft 3D FM. Validating modelled discharge results shows that coupling PCR-GLOBWB to a hydrodynamic routing scheme generally increases model performance compared to using a hydrodynamic or hydrologic model only for all validation parameters applied. Closer examination shows that the 1-D/2-D schematization outperforms 2-D for r2 and root mean square error (RMSE) whilst having a lower Kling–Gupta efficiency (KGE). We also found that spatial coupling has the significant advantage of a better representation of inundation at smaller streams throughout the model domain. A validation of simulated inundation extent revealed that only those set-ups incorporating 1-D channels are capable of representing inundations for reaches below the spatial resolution of the 2-D mesh. Implementing 1-D channels is therefore particularly of advantage for large-scale inundation models, as they are often built upon remotely sensed surface elevation data which often enclose a strong vertical bias, hampering downstream connectivity. Since only a one-directional coupling approach was tested, and therefore important feedback processes are not incorporated, simulated discharge and inundation extent for both coupled set-ups is generally overpredicted. Hence, it will be the subsequent step to extend it to a two-directional coupling scheme to obtain a closed feedback loop between hydrologic and hydrodynamic processes. The current findings demonstrating the potential of one-directionally and spatially coupled models to obtain improved discharge estimates form an important step towards a large-scale inundation model with a full dynamic coupling between hydrology and hydrodynamics.


2016 ◽  
Vol 48 (6) ◽  
pp. 1697-1709 ◽  
Author(s):  
Christina Papadaki ◽  
Vasilis Bellos ◽  
Lazaros Ntoanidis ◽  
Elias Dimitriou

Abstract Hydraulic-habitat models combine the dynamic behavior of river discharge with geomorphological and ecological responses. In this study, they are used for estimating environmental flow requirements. We applied a Pseudo-two-dimensional (2D) model based on the one-dimensional (1D) HEC-RAS model and an in-house 2D (FLOW-R2D) hydrodynamic model to a section of river for several flows in respect of summer conditions of the study reach, and compared the results derived from the models in terms of water depths and velocities as well as habitat predictions in terms of weighted usable area (WUA). In general, 2D models are more promising in habitat studies since they quantify spatial variations and combinations of flow patterns important to stream flora and fauna in a higher detail than the 1D models. Relationships between WUA and discharge for the two models were examined, to compare the similarity as well as the magnitude of predictions over the modelled discharge range. The models predicted differences in the location of maxima and changes in variation of velocity and water depth. Finally, differences in spatial distribution (in terms of suitability indices and WUA) between the Pseudo-2D and the fully 2D modelling results can be considerable on a cell-by-cell basis.


2012 ◽  
Vol 60 (4) ◽  
pp. 227-241 ◽  
Author(s):  
Radek Roub ◽  
Tomáš Hejduk ◽  
Pavel Novák

Knowing the extent of inundation areas for individual N-year flood events, the specific flood scenarios, and having an idea about the depths and velocities in the longitudinal or transverse water course profile provided by hydrodynamic models is of key importance for protecting peoples’ lives and mitigating damage to property. Input data for creating the watercourse computational geometry are crucial for hydrodynamic models. Requirements for input data vary with respect to the hydrodynamic model used. One-dimensional (1D) hydrodynamic models in which the computing track is formed by cross-sectional profiles of the channel are characterized by lower requirements for input data. In two-dimensional (2D) hydrodynamic models, a digital terrain model is needed for the entire area studied. Financial requirements of the project increase with regard to the input data and the model used. The increase is mainly due to the high cost of the geodetic surveying of the stream channel. The paper aims at a verification and presentation of the suitability of using hydrological measurements in developing a schematization (geometry) of water courses based on topographic data gained from aerial laser scanning provided by the Czech Office for Surveying, Mapping and Cadastre. Taking into account the hydrological measurement during the schematization of the water course into the hydrodynamic model consists in the derivation of flow rate achieved at the time of data acquisition using the method of aerial laser scanning by means of hydrological analogy and in using the established flow rate values as a basis for deepening of the digital terrain model from aerial laser scanning data. Thus, the given principle helps to capture precisely the remaining part of the channel profile which is not reflected in the digital terrain model prepared by the method of aerial laser scanning and fully correct geometry is achieved for the hydrodynamic model.


2018 ◽  
Author(s):  
Clotilde Saint-Martin ◽  
Pierre Javelle ◽  
Freddy Vinet

Abstract. The present paper introduces a new database for collection of flood-related damage and assessment at the local scale. Every year in France, recurring flood events result in several million Euros of damage, and reducing the heavy consequences of floods has become a high priority. However, actions to reduce the impact of floods are often hindered by the lack of damage data on past flood events. Even if partial data were available, data sharing within the research community is very limited and closely supervised to ensure the protection of individuals' personal information. In comparison, the growth of social and online media has provided access to broad information at the local and global scales. Therefore, the DamaGIS database offers an innovative bottom-up approach to gather and identify damage data from multiple sources, including new media. This paper also presents an easily reproducible method to assess the severity of flood damage. The DamaGIS database is available at doi:10.5281/zenodo.1186623.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1743
Author(s):  
Junwei Zhou ◽  
Weimin Bao ◽  
Yu Li ◽  
Li Cheng ◽  
Muxi Bao

Although steady uniform friction formulas have been introduced to the framework of a one-dimensional (1D) hydrodynamic model for centuries, the error of friction calculation inevitably undermines the performance of flood routing. Based on successful results of unsteady channel friction research studies, a newly proposed unsteady friction model is introduced to establish a modified 1D hydrodynamic model (namely, the modified SVN model). With the help of a carefully designed parameter calibration method, the performance of the modified SVN model was compared with that of the original SVN model in a simulation test for a hydraulic experiment. This study’s results revealed that compared with the original SVN model, the modified SVN model could achieve a better simulation in both the flow depth and the sectional averaged velocity simulations. Furthermore, it could reduce the peak value error and the time-at-peak error as well, indicating that the use of an unsteady friction model can efficiently improve the performance of a 1D hydrodynamic model.


Sign in / Sign up

Export Citation Format

Share Document