Short-term retrospective forecasting of earthquakes based on temporal variations of the b-value of the magnitude-frequency distribution

Author(s):  
Paolo Gasperini ◽  
Emanuele Biondini ◽  
Antonio Petruccelli ◽  
Barbara Lolli ◽  
Gianfranco Vannucci

<p>In some recent works it has been hypothesized that the slope (b-value) of the magnitude-frequency distribution of earthquakes may be related to the differential stress inside the crust.  In particular, it has been observed that low b-values are associated with high stress values and therefore with high probability of occurrence of strong seismic shocks. In this paper we formulate a predictive hypothesis based on temporal variations of the b-value. We tested and optimized such hypothesis retrospectively based on the homogenized Italian instrumental seismic catalog (HORUS) from 1995 to 2018. A comparison is also made with a similar predictive hypothesis based on the occurrence of strong foreshocks.</p><p> </p>

2020 ◽  
Author(s):  
Pierre Dublanchet

<p>The magnitudes of earthquakes are known to follow a power-law distribution, where the frequency of earthquake occurrence decreases with the magnitude. This decay is usually characterized by the power exponent, the so-called b-value. Typical observations report b-values in the range 0.5-2. The origin of b-value variations is however still debated. Seismological observations of natural seismicity indicate a dependence of the b-value with depth, and with faulting style, which could be interpreted as a signature of a stress dependence. Within creeping regions of major tectonic faults, the b-value of microseismicity increases with creep rate. Stress dependent b-value of acoustic emissions is also commonly reported during rock failure experiments in the laboratory. Natural and laboratory observations all support a decrease of b-value with increasing differential stress. I report here on the origin of b-value variations obtained in a fault model consisting in a planar 2D rate-and-state frictional fault embedded between 3D elastic slabs. This model assumes heterogeneous frictional properties in the form of overlapping asperities with size-dependent critical slip distance distributed on a creeping segment. This allows to get complex sequences of earthquakes characterized by realistic b-values. The role of frictional heterogeneity, normal stress, shear stress, and creep rate on the b-value variations is systematically explored. It is shown that the size distribution of asperities is not the only feature controlling the b-value, which indicates an important contribution from partial ruptures, and cascading events. In this model cascades of events (and thus b-value) is strongly influenced by frictional heterogeneity and normal stress through fracture energy distribution. If the decrease of b-value with differential stress is reproduced in these simulations, it is also shown that part of the b-value fluctuations could be attributed to changes of nucleation length and stress drop with normal stress. A slight increase of b-value with slip rate exists but remains an order of magnitude smaller than the observations.</p>


2019 ◽  
Vol 220 (2) ◽  
pp. 1436-1446 ◽  
Author(s):  
B Fryer ◽  
G Siddiqi ◽  
L Laloui

SUMMARY It is suggested that fluid injection in normal faulting stress regimes can stabilize a reservoir if the stress path is high enough. This stabilization is not seen when the reservoir is significantly cooled as a result of injection. Further, a new strategy is suggested for stimulating reservoirs in shear with a reduced chance of inducing a large magnitude seismic event. The version of this methodology presented here is applicable for reverse faulting stress regimes and involves an initial stress preconditioning stage where the reservoir is cooled and the pressure increase is limited. This process reduces the horizontal total stress and thereby also the differential stress. Next, the reservoir is stimulated with a rapid increase in pore pressure, resulting in shear failure at a lower differential stress than was initially present in the reservoir. Due to the connection seen between the Gutenberg–Richter b-value and differential stress, it is suggested that reservoirs stimulated in this fashion will exhibit higher b-values and thereby also have a reduced chance of hosting a large magnitude event. It is suggested that adaptations of this methodology are applicable to both normal and strike-slip faulting stress regimes.


2021 ◽  
Vol 26 (2) ◽  
pp. 127-136
Author(s):  
Ram Krishna Tiwari ◽  
Harihar Paudyal

To establish the relations between b-value and fractal dimension (D0) for the earthquake distribution, we study the regional variations of those parameters in the central Himalaya region. The earthquake catalog of 989 events (Mc = 4.0) from 1994.01.31 to 2020.10.28 was analyzed in the study. The study region is divided into two sub-regions (I) Region A: 27.3°N -30.3°N and 80°E -84.8°E (western Nepal and vicinity) and (II) Region B: 26.4°N -28.6°N and 84.8°E -88.4°E (eastern Nepal and vicinity). The b-value observed is within the range between 0.92 to 1.02 for region A and 0.64 to 0.74 for region B showing the homogeneous nature of the variation. The seismic a-value for those regions ranges respectively between 5.385 to 6.007 and 4.565 to 5.218. The low b-values and low seismicity noted for region B may be related with less heterogeneity and high strength in the crust. The high seismicity with average b-values obtained for region A may be related with high heterogeneity and low strength in the crust. The fractal dimension ≥1.74 for region A and ≥ 1.82 for region B indicate that the earthquakes were distributed over two-dimensional embedding space. The observed correlation between D0 and b is negative for western Nepal and positive for eastern Nepal while the correlation between D0 and a/b value is just opposite for the respective regions. The findings identify both regions as high-stress regions. The results coming from the study agree with the results of the preceding works and reveal information about the local disparity of stress and change in tectonic complexity in the central Himalaya region.


1996 ◽  
Vol 06 (03) ◽  
pp. 545-555 ◽  
Author(s):  
LIANGYUE CAO ◽  
HAIPING FANG ◽  
QUANLIN LI ◽  
JINBIAO CHEN

A technique of nonlinear deterministic prediction is applied to test the short-term predictability of b-values for seismic events recorded in Tangshan region in China. The prediction results are satisfactory and significantly better than that of conventional AR models. This implies that the underlying mechanism, as expressed by the b-value data sequence, is deterministic. And it could be helpful for earthquake predictions.


2016 ◽  
Vol 59 (5) ◽  
Author(s):  
Prasanta Chingtham ◽  
Babita Sharma ◽  
Sumer Chopra ◽  
Pareshnath SinghaRoy

Present study describes the statistical properties of aftershock sequences related with two major Nepal earthquakes (April 25, 2015, MW 7.8, and May 12, 2015, MW 7.2) and their correlations with the tectonics of Nepal Himalaya. The established empirical scaling laws such as the Gutenberg–Richter (GR) relation, the modified Omori law, and the fractal dimension for both the aftershock sequences of Nepal earthquakes have been investigated to assess the spatio-temporal characteristics of these sequences. For this purpose, the homogenized earthquake catalog in moment magnitude, MW is compiled from International Seismological Center (ISC) and Global Centroid Moment Tensor (GCMT) databases during the period from April 25 to October 31, 2015. The magnitude of completeness, MC, a and b-values of Gutenberg–Richter relationship for the first aftershock sequence are found to be 3.0, 4.74, 0.75 (±0.03) respectively whereas the MC, a and b-values of the same relationship for the second aftershock sequence are calculated to be 3.3, 5.46, 0.90 (±0.04) respectively. The observed low b-values for both the sequences, as compared to the global mean of 1.0 indicate the presence of high differential stress accumulations within the fractured rock mass of Nepal Himalaya. The calculated p-values of 1.01 ± 0.05 and 0.95 ± 0.04 respectively for both the aftershock sequences also imply that the aftershock sequence of first main-shock exhibits relatively faster temporal decay pattern than the aftershock sequence of second main-shock. The fractal dimensions, DC values of 1.84 ± 0.05 and 1.91 ± 0.05 respectively for both the aftershock sequences of Nepal earthquakes also reveal the clustering pattern of earthquakes and signifies that the aftershocks are scattered all around the two dimensional space of fractured fault systems of the Nepal region. The low b-value and low DC observed in the temporal variations of b-value and DC before the investigated earthquake (MW 7.2) suggest the presence of high-stress concentrations in the thrusting regimes of the Nepal region before the failure of faults. Moreover, the decrease of b-value with the corresponding decrease of DC observed in their temporal variations can primarily act as an indicator for possible prediction of major earthquakes in the study region.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 598
Author(s):  
Yijiang Zong ◽  
Lijun Han ◽  
Yuhao Jin ◽  
Weisheng Zhao ◽  
Lingdong Meng

Short-term and creep tests of fractured sandstone with different degrees of damage prepared using pre-peak and post-peak unloading tests on intact sandstone were carried out using a servo-controlled rock mechanics system. Based on our experimental results, the influence of confining pressure and damage on short-term mechanical behavior of fractured sandstone with different degrees of damage was first analyzed. The results show that the peak strength, residual strength, elastic modulus, and secant modulus of fractured sandstone increase linearly with increasing confining pressure, but decrease with increasing damage. The short-term failure modes depend on the damage and change from typical shear failure modes to multiple shear failure modes with increasing damage. Then, the influence of the differential stress, confining pressure, and the degree of damage on the creep mechanical behavior of fractured specimens was further investigated. The axial instantaneous strain and creep strain increase linearly with increasing differential stress, and the specimens exhibit significant time-dependent behavior under high stress. The steady creep rate increases with increasing stress, but it decreases with increasing confining pressure and damage. However, the long-term strength and creep failure strength of fractured specimens increase linearly with increasing confining pressure, but they decrease linearly with increasing damage. The creep failure modes of fractured specimens are also the main shear failure modes, which are similar to the short-term failure modes.


2019 ◽  
Vol 2 (2) ◽  
pp. 192-199
Author(s):  
Tuğba Türker ◽  
Yusuf Bayrak

The aim of this study determined spatial-temporal variations of Gutenberg-Richter b-values using the Classic Method of Moment (CMM) and seismicity in and around Lake Van. We wrote a Matlab program for this method in the Matlab system. The faults for the Van region used as updated in the GIS system given the reference from the different sources by Bayrak and Türker (will be used in the doctoral thesis). Around Lake Van divided into 4 different seismic source regions. For each seismic source region, probabilities ranging from 0 to 1, the annual probability of exceedances and return periods were calculated for the next 25, 50 and 100 years. Van region determined the seismicity b value changes, β-values. We mapped spatial variations of the b-values using the GIS system. As a result, Lake Van region (region 2) occurred 7.1 magnitude an earthquake in the next 100 years with 31 % probability levels. If it occurred in the 50 years with 15 % probability levels, in the 25 years with 7.8 % probability levels. We estimated the low b-values in the Lake Van so, it has been the high seismicity and can be occurred an earthquake as the high magnitude in the next years. This study will be lead to earthquake hazard analysis and seismic hazard studies in and around Lake Van.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1912
Author(s):  
Aleksander Yevtushenko ◽  
Katarzyna Topczewska ◽  
Michal Kuciej

An algorithm to determine the maximum temperature of brake systems during repetitive short-term (RST) braking mode has been proposed. For this purpose, the intermittent mode of braking was given in the form of a few cyclic stages consisting of subsequent braking and acceleration processes. Based on the Chichinadze’s hypothesis of temperature summation, the evolutions of the maximum temperature during each cycle were calculated as the sum of the mean temperature on the nominal contact surface of the friction pair elements and temperature attained on the real contact areas (flash temperature). In order to find the first component, the analytical solution to the one-dimensional thermal problem of friction for two semi-spaces taking into account frictional heat generation was adapted. To find the flash temperature, the solution to the problem for the semi-infinite rod sliding with variable velocity against a smooth surface was used. In both solutions, the temperature-dependent coefficient of friction and thermal sensitivity of materials were taken into account. Numerical calculations were carried out for disc and drum brake systems. The obtained temporal variations of sliding velocity, friction power and temperature were investigated on each stage of braking. It was found that the obtained results agree well with the corresponding data established by finite element and finite-difference methods.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


Sign in / Sign up

Export Citation Format

Share Document