The 2019 biomass burning season in South America: climate diagnostics, fire monitoring and air quality forecasting

Author(s):  
Ariane Frassoni

<p>The biomass burning season in South America is mainly concentrated between July and October, period characterized by dry conditions associated with the decay phase of the South American monsoon system. The dry season in South America starts at the end of March and beginning of April when the maximum convection starts its shift to northward South America. The climatological dryness condition over central South America during July to October increases the occurrence of vegetation fires. The number of active fires detected by the AQUA satellite from 1998 to November 2019 in South America indicate fires abruptly increase from July to August, reaching a peak in September. Fires convert vegetation used as fuel into a series of combustion products that can remain in burned places or can be transported to other places by the atmospheric circulation. The 2019 dry season in South America was characterized by an abnormal high occurrence of intense and persistent fire episodes that injected tons of aerosols into the atmosphere. The present study aims to perform a comparative assessment of the four last South American biomass burning seasons. To compare the 2019 biomass burning season with 2016, 2017 and 2018 season, in this paper it is presented the fire active data compiled by the National Institute for Space Research (INPE) for the periods of analysis, the climatological aspects associated with each season and finally the validation of the operational integrated meteorology/air quality forecasting system Brazilian developments on the Regional Atmospheric Modeling System of the Center for Weather Forecasting and Climate Studies (CPTEC/INPE), for the considered periods.</p>

2014 ◽  
Vol 29 (3) ◽  
pp. 315-330
Author(s):  
Yanina García Skabar ◽  
Matilde Nicolini

During the warm season 2002-2003, the South American Low-Level Jet Experiment (SALLJEX) was carried out in southeastern South America. Taking advantage of the unique database collected in the region, a set of analyses is generated for the SALLJEX period assimilating all available data. The spatial and temporal resolution of this new set of analyses is higher than that of analyses available up to present for southeastern South America. The aim of this paper is to determine the impact of assimilating data into initial fields on mesoscale forecasts in the region, using the Brazilian Regional Atmospheric Modeling System (BRAMS) with particular emphasis on the South American Low-Level Jet (SALLJ) structure and on rainfall forecasts. For most variables, using analyses with data assimilated as initial fields has positive effects on short term forecast. Such effect is greater in wind variables, but not significant in forecasts longer than 24 hours. In particular, data assimilation does not improve forecasts of 24-hour accumulated rainfall, but it has slight positive effects on accumulated rainfall between 6 and 12 forecast hours. As the main focus is on the representation of the SALLJ, the effect of data assimilation in its forecast was explored. Results show that SALLJ is fairly predictable however assimilating additional observation data has small impact on the forecast of SALLJ timing and intensity. The strength of the SALLJ is underestimated independently of data assimilation. However, Root mean square error (RMSE) and BIAS values reveal the positive effect of data assimilation up to 18-hours forecasts with a greater impact near higher topography.


2018 ◽  
Vol 18 (7) ◽  
pp. 1734-1745 ◽  
Author(s):  
Leila Droprinchinski Martins ◽  
Ricardo Hallak ◽  
Rafaela Cruz Alves ◽  
Daniela S. de Almeida ◽  
Rafaela Squizzato ◽  
...  

2019 ◽  
Vol 19 (9) ◽  
pp. 5771-5790 ◽  
Author(s):  
Eoghan Darbyshire ◽  
William T. Morgan ◽  
James D. Allan ◽  
Dantong Liu ◽  
Michael J. Flynn ◽  
...  

Abstract. We examine processes driving the vertical distribution of biomass burning pollution following an integrated analysis of over 200 pollutant and meteorological profiles measured in situ during the South AMerican Biomass Burning Analysis (SAMBBA) field experiment. This study will aid future work examining the impact of biomass burning on weather, climate and air quality. During the dry season there were significant contrasts in the composition and vertical distribution of haze between western and eastern regions of tropical South America. Owing to an active or residual convective mixing layer, the aerosol abundance was similar from the surface to ∼1.5 km in the west and ∼3 km in the east. Black carbon mass loadings were double as much in the east (1.7 µg m−3) than the west (0.85 µg m−3), but aerosol scattering coefficients at 550 nm were similar (∼120 Mm−1), as too were CO near-surface concentrations (310–340 ppb). We attribute these contrasts to the more flaming combustion of Cerrado fires in the east and more smouldering combustion of deforestation and pasture fires in the west. Horizontal wind shear was important in inhibiting mixed layer growth and plume rise, in addition to advecting pollutants from the Cerrado regions into the remote tropical forest of central Amazonia. Thin layers above the mixing layer indicate the roles of both plume injection and shallow moist convection in delivering pollution to the lower free troposphere. However, detrainment of large smoke plumes into the upper free troposphere was very infrequently observed. Our results reiterate that thermodynamics control the pollutant vertical distribution and thus point to the need for correct model representation so that the spatial distribution and vertical structure of biomass burning smoke is captured. We observed an increase of aerosol abundance relative to CO with altitude both in the background haze and plume enhancement ratios. It is unlikely associated with thermodynamic partitioning, aerosol deposition or local non-fire sources. We speculate it may be linked to long-range transport from West Africa or fire combustion efficiency coupled to plume injection height. Further enquiry is required to explain the phenomenon and explore impacts on regional climate and air quality.


2020 ◽  
Author(s):  
Margaret Marvin ◽  
Paul Palmer ◽  
Fei Yao ◽  
Barry Latter ◽  
Richard Siddans ◽  
...  

<p>Mainland and maritime Southeast Asia is home to more than 655 million people, representing nearly 10% of the global population. The dry season in this region is typically associated with intense biomass burning activity, which leads to a significant increase in surface air pollutants that are harmful to human health, including ozone (O<sub>3</sub>) and fine (radii smaller than 2.5 microns) particulate matter (PM<sub>2.5</sub>). Latitude-based differences in dry season timing and land use distinguish two regional biomass burning regimes: (1) agricultural waste burning on the peninsular mainland from February through April and (2) coastal peat burning across the equatorial islands in September and October. The type and amount of material burned determines the chemical composition of emissions and subsequently their impact on regional air quality. Understanding the individual and collective roles of these biomass burning regimes is a crucial step towards developing effective air quality mitigation strategies for Southeast Asia. Here, we use the nested GEOS-Chem atmospheric chemistry transport model (horizontal resolution of 0.25° x 0.3125°) to simulate fire-atmosphere interactions over Southeast Asia during March and September of 2014, when emissions peak from the two regional burning seasons. Based on our analysis of model output, we report how these two distinct biomass burning regimes impact the photochemical environment over Southeast Asia and what the resulting consequences are for surface air quality. We will also present a critical evaluation of our model using ground-based and satellite observations of atmospheric composition across the region.</p>


2014 ◽  
Vol 14 (8) ◽  
pp. 3929-3943 ◽  
Author(s):  
P. Castellanos ◽  
K. F. Boersma ◽  
G. R. van der Werf

Abstract. Biomass burning is an important contributor to global total emissions of NOx (NO+NO2). Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome-specific emission factors, defined in units of grams of NO per kilogram of dry matter consumed. Emission factors are a significant source of uncertainty in bottom-up fire emissions modeling because relatively few observations are available to characterize the large spatial and temporal variability of burning conditions. In this paper we use NO2 tropospheric column observations from the Ozone Monitoring Instrument (OMI) from the year 2005 over South America to calculate monthly NOx emission factors for four fire types: deforestation, savanna/grassland, woodland, and agricultural waste burning. In general, the spatial patterns in NOx emission factors calculated in this work are consistent with emission factors derived from in situ measurements from the region but are more variable than published biome-specific global average emission factors widely used in bottom-up fire emissions inventories such as the Global Fire Emissions Database (GFED). Satellite-based NOx emission factors also indicate substantial temporal variability in burning conditions. Overall, we found that deforestation fires have the lowest NOx emission factors, on average 30% lower than the emission factors used in GFED v3. Agricultural fire NOx emission factors were the highest, on average a factor of 1.8 higher than GFED v3 values. For savanna, woodland, and deforestation fires, early dry season NOx emission factors were a factor of ~1.5–2 higher than late dry season emission factors. A minimum in the NOx emission factor seasonal cycle for deforestation fires occurred in August, the time period of severe drought in South America in 2005, supporting the hypothesis that prolonged dry spells may lead to an increase in the contribution of smoldering combustion from large-diameter fuels, offsetting the higher combustion efficiency of dryer fine fuels. We evaluated the OMI-derived NOx emission factors with SCIAMACHY NO2 tropospheric column observations and found improved model performance in regions dominated by fire emissions.


2005 ◽  
Vol 18 (23) ◽  
pp. 4993-5010 ◽  
Author(s):  
Samson M. Hagos ◽  
Kerry H. Cook

Abstract Previous studies show that the climatological precipitation over South America, particularly the Nordeste region, is influenced by the presence of the African continent. Here the influence of African topography and surface wetness on the Atlantic marine ITCZ (AMI) and South American precipitation are investigated. Cross-equatorial flow over the Atlantic Ocean introduced by north–south asymmetry in surface conditions over Africa shifts the AMI in the direction of the flow. African topography, for example, introduces an anomalous high over the southern Atlantic Ocean and a low to the north. This results in a northward migration of the AMI and dry conditions over the Nordeste region. The implications of this process on variability are then studied by analyzing the response of the AMI to soil moisture anomalies over tropical Africa. Northerly flow induced by equatorially asymmetric perturbations in soil moisture over northern tropical Africa shifts the AMI southward, increasing the climatological precipitation over northeastern South America. Flow associated with an equatorially symmetric perturbation in soil moisture, however, has a very weak cross-equatorial component and very weak influence on the AMI and South American precipitation. The sensitivity of the AMI to soil moisture perturbations over certain regions of Africa can possibly improve the skill of prediction.


2021 ◽  
Author(s):  
Paula Castesana ◽  
Melisa Diaz Resquin ◽  
Nicolás Huneeus ◽  
Enrique Puliafito ◽  
Sabine Darras ◽  
...  

Abstract. The multidisciplinary project Prediction of Air Pollution in Latin America and the Caribbean (PAPILA) is dedicated to the development and implementation of an air quality analysis and forecasting system to assess pollution impacts on human health and economy. In this context, a comprehensive emission inventory for South America was developed on the basis of the existing data on the global dataset CAMS-GLOB-ANT v4.1 (developed by joining CEDS trends and EDGARv4.3.2 historical data), enriching it with derived data from locally available emission inventories for Argentina, Chile and Colombia. This work presents the results of the first joint effort of South American researchers and European colleagues to generate regional maps of emissions, together with a methodological approach to continue incorporating information into future versions of the dataset. This version of the PAPILA dataset includes CO, NOx, NMVOCs, NH3 and SO2 annual emissions from anthropogenic sources for the period 2014–2016, with a spatial resolution of 0.1° x 0.1° over a domain that covers 32°–120° W and 34°N–58°S. PAPILA dataset is presented as netCDF4 files and is available in an open access data repository under a CC-BY 4 license: http://dx.doi.org/10.17632/btf2mz4fhf.2. A comparative assessment of PAPILA-CAMS datasets was carried out for (i) the South American region, (ii) the countries with local data (Argentina, Colombia and Chile), and (iii) downscaled emission maps for urban domains with different environmental and anthropogenic factors. Relevant differences were obtained both at country and urban level for all the compounds analysed. Among them, we found that when comparing total emissions of PAPILA versus CAMS datasets at the national level, higher levels of NOx and considerably lower of the other species were obtained for Argentina, higher levels of SO2 and lower of CO and NOx for Colombia, and considerably higher levels CO, NMVOCs and SO2 for Chile. These discrepancies are mainly related to the representativeness of the local practices in the local emissions estimates, to the improvements made in the spatial distribution of the locally estimated emissions, or both. Both datasets were evaluated relative to surface concentrations of CO and NOx by using them as input data to the WRF-Chem model for one of the analysed domains, the Metropolitan Area of Buenos Aires, for summer and winter of 2015. For winter, PAPILA-based results had lower bias for CO and NOx concentrations, for which CAMS-based results tended to be underestimated. Both inventories exhibited similar performances for CO in summer, while PAPILA simulation outperformed NOx concentrations. These results highlight the importance of refining global inventories with local data to obtain accurate results with high-resolution air quality models.


2009 ◽  
Vol 3 (1) ◽  
pp. 27-33 ◽  
Author(s):  
J. Kukkonen ◽  
T. Klein ◽  
K. Karatzas ◽  
K. Torseth ◽  
A. Fahre Vik ◽  
...  

Abstract. The COST ES0602 action provides a forum for benchmarking approaches and practices in data exchange and multi-model capabilities for chemical weather forecasting and near real-time information services in Europe. The action includes approximately 30 participants from 19 countries, and its duration is from 2007 to 2011 (http://www.chemicalweather.eu/). Major efforts have been dedicated in other actions and projects to the development of infrastructures for data flow. We have therefore aimed for collaboration with ongoing actions towards developing near real-time exchange of input data for air quality forecasting. We have collected information on the operational air quality forecasting models on a regional and continental scale in a structured form, and inter-compared and evaluated the physical and chemical structure of these models. We have also constructed a European chemical weather forecasting portal that includes links to most of the available chemical weather forecasting systems in Europe. The collaboration also includes the examination of the case studies that have been organized within COST-728, in order to inter-compare and evaluate the models against experimental data. We have also constructed an operational model forecasting ensemble. Data from a representative set of regional background stations have been selected, and the operational forecasts for this set of sites will be inter-compared and evaluated. The Action has investigated, analysed and reviewed existing chemical weather information systems and services, and will provide recommendations on best practices concerning the presentation and dissemination of chemical weather information towards the public and decision makers.


2013 ◽  
Vol 13 (8) ◽  
pp. 22757-22793 ◽  
Author(s):  
P. Castellanos ◽  
K. F. Boersma ◽  
G. R. van der Werf

Abstract. Biomass burning is an important contributor to global total emissions of NOx (NO + NO2). Generally bottom-up fire emissions models calculate NOx emissions by multiplying fuel consumption estimates with static biome specific emission factors, defined in units of grams of NO per kilogram of dry matter consumed. Emission factors are a significant source of uncertainty in bottom-up fire emissions modeling because relatively few observations are available to characterize the large spatial and temporal variability of burning conditions. In this paper we use NO2 tropospheric column observations from the Ozone Monitoring Instrument (OMI) from the year 2005 over South America to calculate monthly NOx emission factors for four fire types: deforestation, savanna/grassland, woodland, and agricultural waste burning. In general, the spatial trends in NOx emission factors calculated in this work are consistent with emission factors derived from in situ measurements from the region, but are more variable than published biome specific global average emission factors widely used in bottom up fire emissions inventories such as the Global Fire Emissions Database (GFED) v3. Satellite based NOx emission factors also indicate substantial temporal variability in burning conditions. Overall, we found that deforestation fires have the lowest NOx emission factors, on average 30 % lower than the emission factors used in GFED v3. Agricultural fire NOx emission factors were the highest, on average a factor of 2 higher than GFED v3 values. For savanna, woodland, and deforestation fires early dry season NOx emission factors were a factor of ~1.5–2.0 higher than late dry season emission factors. A minimum in the NOx emission factor seasonal cycle for deforestation fires occurred in August, the time period of severe drought in South America in 2005. Our results support the hypothesis that prolonged dry spells may lead to an increase in the contribution of smoldering combustion from large diameter fuels to total fire emissions, which would lower the overall modified combustion efficiency (MCE) and NOx emission factor, and offset the higher combustion efficiency of dryer fine fuels. We evaluated the OMI derived NOx emission factors with SCIAMACHY NO2 tropospheric column observations and found improved model performance in regions dominated by fire emissions.


2020 ◽  
Author(s):  
Peter Hoor ◽  
Daniel Kunkel ◽  
Hans-Christoph Lachnitt ◽  
Heiko Bozem ◽  
Vera Bense ◽  
...  

<p>The biomass burning season in America was exceptionally intense during summer 2019. Particularly in the subtropics biomass burning potentially contributes significantly to the trace gas budget of the upper troposphere and can affect chemistry and composition far from the source.</p><p>During the SOUTHTRAC mission, which took place in September and November 2019, several cross sections from the equator to the southern tip of south America were flown at typical altitudes of 13-14 km. During the northbound flight on October, 7<sup>th</sup> 2019 massive enhancements of pollutants were observed at these altitudes. Notably, in-situ observations show continuously elevated CO values exceeding 200 ppbv over a flight distance of more than 1000 km. These massive enhancements were accompanied by largely elevated NO and NO<sub>y</sub> as well as CO<sub>2</sub> and could be attributed to the large fires in South America during this time. Observations of C2H<sub>2</sub> and PAN from GLORIA show, that pollution covered a layer extending from 8-9 km to the flight level at 13 km.</p><p>Comparing the tracer observations to previous flights in exactly the same region three weeks earlier, we could estimate the ozone production due to the biomass burning. Based on first results we estimate ozone production in the polluted air masses up to 30-40 ppbv in the UT which is almost 40% of the observed ozone mixing ratio. Given the large extent of the polluted area over 15 degrees of latitude this may have an impact on the local energy budget of the tropopause region.   </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document