Geomorphological hazards assessment using machine learning and data fusion

Author(s):  
Mohammad Ahmed ◽  
Hamed Farhadi ◽  
Panagiotis Michalis ◽  
Manousos Valyrakis

<p>Turbulent flows may destabilise riverbeds and banks, transporting sediment or underscouring hydraulic infrastructure built near water bodies. For example, scour is a significant challenge that can affect the stability of bridge foundations as the transport of sediment around a bridge pier may cause structural instabilities and catastrophic failures. The aim of this study is to use machine learning techniques & data driven algorithms to predict how energetic turbulent flow events can result in the removal of individual sediment grains, resting on the bed surface or on the protective armour layer around built infrastructure. </p><p>The flume experiments involve flow and particle motion data gathering campaigns [1]. Turbulent flow data are collected upstream the exposed target particle using acoustic Doppler velocimetry. Particle's motion data are gathered using novel micro-electro-mechanical sensors embedded within its waterproof casing, for a range of flow conditions. The obtained data are fed into neural networks having distinct algorithmic complexity (inputs, levels and neutrons). A comparison of the performance of the various model architectures, as well as with past ones [2], is conducted to identify the optimal predictive algorithm for the configuration tested. Sensor data fusion combined with artificial intelligence techniques are shown to provide a unique tool for live and robust data-driven predictions to help tackle significant engineering problems, such as geomorphological activity and scouring of infrastructure (eg bridge piers and embankments) due to turbulent flows, which become increasingly more challenging, under the scope of climate change and intensifying extreme weather hazards.</p><p> </p><p>References</p><p>[1] Valyrakis, M., Farhadi, H. 2017. Investigating coarse sediment particles transport using PTV and “smart-pebbles” instrumented with inertial sensors, EGU General Assembly 2017, Vienna, Austria, 23-28 April 2017, id. 9980.</p><p>[2] Valyrakis, M., Diplas, P., Dancey, C.L. 2011b. Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems, Hydrological Processes, 25 (22). pp. 3513-3524. ISSN 0885-6087, doi:10.1002/hyp.8228.</p>

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1955 ◽  
Author(s):  
Klemen Kenda ◽  
Blaž Kažič ◽  
Erik Novak ◽  
Dunja Mladenić

To achieve the full analytical potential of the streaming data from the internet of things, the interconnection of various data sources is needed. By definition, those sources are heterogeneous and their integration is not a trivial task. A common approach to exploit streaming sensor data potential is to use machine learning techniques for predictive analytics in a way that is agnostic to the domain knowledge. Such an approach can be easily integrated in various use cases. In this paper, we propose a novel framework for data fusion of a set of heterogeneous data streams. The proposed framework enriches streaming sensor data with the contextual and historical information relevant for describing the underlying processes. The final result of the framework is a feature vector, ready to be used in a machine learning algorithm. The framework has been applied to a cloud and to an edge device. In the latter case, incremental learning capabilities have been demonstrated. The reported results illustrate a significant improvement of data-driven models, applied to sensor streams. Beside higher accuracy of the models the platform offers easy setup and thus fast prototyping capabilities in real-world applications.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1208
Author(s):  
Massimiliano Bordoni ◽  
Fabrizio Inzaghi ◽  
Valerio Vivaldi ◽  
Roberto Valentino ◽  
Marco Bittelli ◽  
...  

Soil water potential is a key factor to study water dynamics in soil and for estimating the occurrence of natural hazards, as landslides. This parameter can be measured in field or estimated through physically-based models, limited by the availability of effective input soil properties and preliminary calibrations. Data-driven models, based on machine learning techniques, could overcome these gaps. The aim of this paper is then to develop an innovative machine learning methodology to assess soil water potential trends and to implement them in models to predict shallow landslides. Monitoring data since 2012 from test-sites slopes in Oltrepò Pavese (northern Italy) were used to build the models. Within the tested techniques, Random Forest models allowed an outstanding reconstruction of measured soil water potential temporal trends. Each model is sensitive to meteorological and hydrological characteristics according to soil depths and features. Reliability of the proposed models was confirmed by correct estimation of days when shallow landslides were triggered in the study areas in December 2020, after implementing the modeled trends on a slope stability model, and by the correct choice of physically-based rainfall thresholds. These results confirm the potential application of the developed methodology to estimate hydrological scenarios that could be used for decision-making purposes.


AI Magazine ◽  
2012 ◽  
Vol 33 (2) ◽  
pp. 55 ◽  
Author(s):  
Nisarg Vyas ◽  
Jonathan Farringdon ◽  
David Andre ◽  
John Ivo Stivoric

In this article we provide insight into the BodyMedia FIT armband system — a wearable multi-sensor technology that continuously monitors physiological events related to energy expenditure for weight management using machine learning and data modeling methods. Since becoming commercially available in 2001, more than half a million users have used the system to track their physiological parameters and to achieve their individual health goals including weight-loss. We describe several challenges that arise in applying machine learning techniques to the health care domain and present various solutions utilized in the armband system. We demonstrate how machine learning and multi-sensor data fusion techniques are critical to the system’s success.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6713
Author(s):  
Omid Khalaj ◽  
Moslem Ghobadi ◽  
Ehsan Saebnoori ◽  
Alireza Zarezadeh ◽  
Mohammadreza Shishesaz ◽  
...  

Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this group of alloys are significantly influenced by the chemical composition and appropriate heat treatment (HT). The main steps in producing OPH alloys consist of mechanical alloying (MA) and consolidation, followed by hot rolling. Toughness was obtained from standard tensile test results for different variants of OPH alloy to understand their mechanical properties. Three machine learning techniques were developed using experimental data to simulate different outcomes. The effectivity of the impact of each parameter on the toughness of OPH alloys is discussed. By using the experimental results performed by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and mechanical alloying (MA) were used to train the models as inputs and toughness was set as the output. The results demonstrated that all three models are suitable for predicting the toughness of OPH alloys, and the models fulfilled all the desired requirements. However, several criteria validated the fact that the adaptive neuro-fuzzy inference systems (ANFIS) model results in better conditions and has a better ability to simulate. The mean square error (MSE) for artificial neural networks (ANN), ANFIS, and support vector regression (SVR) models was 459.22, 0.0418, and 651.68 respectively. After performing the sensitivity analysis (SA) an optimized ANFIS model was achieved with a MSE value of 0.003 and demonstrated that HT temperature is the most significant of these parameters, and this acts as a critical rule in training the data sets.


Author(s):  
Xiaofeng Liu ◽  
Zhimin Feng ◽  
Yuehua Chen ◽  
Hongwei Li

Weigh-in-motion is an efficient way to manage overload vehicles, and usually utilizes multi-sensor to measure vehicle weight at present. To increase generalization and accuracy of support vector regression (SVR) applied in multi-sensor weigh-in-motion data fusion, three improved algorithms are presented in this paper. The first improved algorithm divides train samples into two sets to construct SVR1 and SVR2, respectively, and then test samples are distributed to SVR1 or SVR2 based on the nearest distance principle. The second improved algorithm calculates the theoretical biases of two training samples closeted to one test sample, and then obtains the bias of the test sample by linear interpolation method. The third improved algorithm utilizes the second improved algorithm to realize adaptive adjustment of biases for SVR1 and SVR2. Five vehicles were selected to conduct multi-sensor weigh-in-motion experiments on the built test platform. According to the obtained experiment data, fusion tests of SVR and three improved algorithms are performed, respectively. The results show that three improved algorithms gradually increase accuracy of SVR with fast operation speed, and the third improved algorithm exhibits the best application prospect in multi-sensor weigh-in-motion data fusion.


Sign in / Sign up

Export Citation Format

Share Document