Soil Surface Reflectance as a Tool to Estimate Water Infiltration Rate from UAV Platforms

Author(s):  
Nicolas Francos ◽  
Eyal Ben Dor ◽  
Nunzio Romano ◽  
Paolo Nasta ◽  
Briggita Szabó ◽  
...  

<p>Soil is an essential component in the environment and is vital for food security. It provides ecosystem services, filters water, supplies nutrients to plants, provides us with food, stores carbon, regulates greenhouse gases emissions and it affects our climate. Traditional soil survey methodologies are complicated, expensive, and time-consuming. Visible and infrared spectroscopy can effectively characterize soil properties. Spectral measurements are rapid, precise and inexpensive. The spectra contain information about soil properties, which comprises minerals, organic compounds, and water. Today, several Soil Spectral Libraries (SSLs) are being created worldwide because these datasets have a notable potential to be used as training datasets for machine learning methods that will benefit precision agriculture activity for better management of food production. Nonetheless, as SSL's are created under laboratory conditions it is not clear if it can be used to infer field conditions in situ and/or from the sky. Thus, study the relationship between RS, field spectroscopy and the laboratory measurements of soil is very important. Accordingly, this study postulates that traditional SSLs don't simulate the real spectral signatures in the field that both, satellite and airborne sensors measure as well, because they are affected by factors that are not an integral part of the soil, such as: moisture, litter, human and animal activity, plow, grass, dung, waste, etc… However, under laboratory conditions, these factors are usually removed for the preparation of SSLs. Thus, given the several SSLs available, it is necessary to evaluate the protocols that were used in these SSLs. The objective of this study is to evaluate the gap between field and laboratory spectral measurements through the analysis of the performance of spectral based models. This procedure combined two soil spectral libraries that contain 114 samples that were measured in the laboratory as well as in the field. The nature of the dataset is varied, because these samples were collected from six different fields in three countries of the Mediterranean basin: Israel, Greece and Italy. Moreover, 63 samples are mainly sandy and 51 are mainly clayey. In order to obtain optimal spectral measurements in the field, we used a new optical apparatus that simulates the sun's radiation. Next, we generated PLSR models to estimate one of the most important hydrological parameters namely “infiltration rate” that control the runoff stage, soil erosion and water storage in the soil profile. This property is strongly affected by the surface characteristics. Finally, the field based spectral model was adapted to an UAV hyperspectral sensor in order to estimate the infiltration rate from the sky. The results were successfully validated in field, and we concluded that for the estimation of the infiltration rate, SSLs must be created using surface reflectance in field because laboratory protocols can be detrimental for the performance of the dataset in question.</p><p> </p>

2021 ◽  
Vol 13 (13) ◽  
pp. 2606
Author(s):  
Nicolas Francos ◽  
Nunzio Romano ◽  
Paolo Nasta ◽  
Yijian Zeng ◽  
Brigitta Szabó ◽  
...  

Water infiltration rate (WIR) into the soil profile was investigated through a comprehensive study harnessing spectral information of the soil surface. As soil spectroscopy provides invaluable information on soil attributes, and as WIR is a soil surface-dependent property, field spectroscopy may model WIR better than traditional laboratory spectral measurements. This is because sampling for the latter disrupts the soil-surface status. A field soil spectral library (FSSL), consisting of 114 samples with different textures from six different sites over the Mediterranean basin, combined with traditional laboratory spectral measurements, was created. Next, partial least squares regression analysis was conducted on the spectral and WIR data in different soil texture groups, showing better performance of the field spectral observations compared to traditional laboratory spectroscopy. Moreover, several quantitative spectral properties were lost due to the sampling procedure, and separating the samples according to texture gave higher accuracies. Although the visible near-infrared–shortwave infrared (VNIR–SWIR) spectral region provided better accuracy, we resampled the spectral data to the resolution of a Cubert hyperspectral sensor (VNIR). This hyperspectral sensor was then assembled on an unmanned aerial vehicle (UAV) to apply one selected spectral-based model to the UAV data and map the WIR in a semi-vegetated area within the Alento catchment, Italy. Comprehensive spectral and WIR ground-truth measurements were carried out simultaneously with the UAV–Cubert sensor flight. The results were satisfactorily validated on the ground using field samples, followed by a spatial uncertainty analysis, concluding that the UAV with hyperspectral remote sensing can be used to map soil surface-related soil properties.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6729
Author(s):  
Shree R. S. Dangal ◽  
Jonathan Sanderman

Recent developments in diffuse reflectance soil spectroscopy have increasingly focused on building and using large soil spectral libraries with the purpose of supporting many activities relevant to monitoring, mapping and managing soil resources. A potential limitation of using a mid-infrared (MIR) spectral library developed by another laboratory is the need to account for inherent differences in the signal strength at each wavelength associated with different instrumental and environmental conditions. Here we apply predictive models built using the USDA National Soil Survey Center–Kellogg Soil Survey Laboratory (NSSC-KSSL) MIR spectral library (n = 56,155) to samples sets of European and US origin scanned on a secondary spectrometer to assess the need for calibration transfer using a piecewise direct standardization (PDS) approach in transforming spectra before predicting carbon cycle relevant soil properties (bulk density, CaCO3, organic carbon, clay and pH). The European soil samples were from the land use/cover area frame statistical survey (LUCAS) database available through the European Soil Data Center (ESDAC), while the US soil samples were from the National Ecological Observatory Network (NEON). Additionally, the performance of the predictive models on PDS transfer spectra was tested against the direct calibration models built using samples scanned on the secondary spectrometer. On independent test sets of European and US origin, PDS improved predictions for most but not all soil properties with memory based learning (MBL) models generally outperforming partial least squares regression and Cubist models. Our study suggests that while good-to-excellent results can be obtained without calibration transfer, for most of the cases presented in this study, PDS was necessary for unbiased predictions. The MBL models also outperformed the direct calibration models for most of the soil properties. For laboratories building new spectroscopy capacity utilizing existing spectral libraries, it appears necessary to develop calibration transfer using PDS or other calibration transfer techniques to obtain the least biased and most precise predictions of different soil properties.


2019 ◽  
Vol 11 (12) ◽  
pp. 1406
Author(s):  
Jianhua Ren ◽  
Xiaojie Li ◽  
Sijia Li ◽  
Honglei Zhu ◽  
Kai Zhao

Cracking on the surface of soda saline-alkali soil is very common. In most previous studies, spectral prediction models of soil salinity were less accurate since spectral measurements were usually performed on 2 mm soil samples which cannot represent true soil surface condition very well. The objective of our research is to provide a procedure to improve soil property estimation of soda saline-alkali soil based on spectral measurement considering the texture feature of the soil surface with cracks. To achieve this objective, a cracking test was performed with 57 soil samples from Songnen Plain of China, the contrast (CON) texture feature of crack images of soil samples was then extracted from grey level co-occurrence matrix (GLCM). The original reflectance was then measured and the mixed reflectance considering the CON texture feature was also calculated from both the block soil samples (soil blocks separated by crack regions) and the comparison soil samples (soil powders with 2 mm particle size). The results of analysis between spectra and the main soil properties indicate that surface cracks can reduce the overall reflectivity of the soda saline-alkali soil and thus increasing the spectral difference among the block soil samples with different salinity levels. The results also show that both univariate and multivariate linear regression models considering the CON texture feature can greatly improve the prediction accuracy of main soil properties of soda saline-alkali soils, such as Na+, EC and salinity, which also can reduce the intensity of field spectral measurements under natural condition.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Naftali Goldshleger ◽  
Alexandra Chudnovsky ◽  
Eyal Ben-Dor

We explored the effect of raindrop energy on both water infiltration into soil and the soil's NIR-SWIR spectral reflectance (1200–2400 nm). Seven soils with different physical and morphological properties from Israel and the US were subjected to an artificial rainstorm. The spectral properties of the crust formed on the soil surface were analyzed using an artificial neural network (ANN). Results were compared to a study with the same population in which partial least-squares (PLS) regression was applied. It was concluded that both models (PLS regression and ANN) are generic as they are based on properties that correlate with the physical crust, such as clay content, water content and organic matter. Nonetheless, better results for the connection between infiltration rate and spectral properties were achieved with the non-linear ANN technique in terms of statistical values (RMSE of 17.3% for PLS regression and 10% for ANN). Furthermore, although both models were run at the selected wavelengths and their accuracy was assessed with an independent external group of samples, no pre-processing procedure was applied to the reflectance data when using ANN. As the relationship between infiltration rate and soil reflectance is not linear, ANN methods have the advantage for examining this relationship when many soils are being analyzed.


e-xacta ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Fernanda Bárbaro Franco ◽  
Sidney Portilho ◽  
Juliana Batista de Souza

<p><em>A Serra do Gandarela apresenta uma das maiores reservas hídricas do Quadrilátero Ferrífero e seus aquíferos são de extrema importância para as áreas de drenagens das bacias hidrográficas ali presentes. Possui grande grau de conservação, belezas naturais e uma grande biodiversidade. É uma região que abriga várias espécies vegetais endêmicas e a canga, afloramentos ferruginosos, que é um dos sistemas ecológicos mais ameaçado do Brasil. Esse artigo visa trabalhar a relação entre os solos, coberturas de superfície da Serra do Gandarela e o comportamento hidrológico dos mesmos, demonstrando a capacidade de campo, armazenamento de água, e as taxas de infiltração de água de cada ponto amostrado. Dos três pontos selecionados dois apresentaram bons resultados quanto à recarga hídrica. O primeiro ponto por apresentar um sistema lento de infiltração e percolação e o segundo ponto por infiltrar grande quantidade de água. O terceiro ponto apresentou uma taxa de infiltração menor, por possuir a textura da parte cimentante da matriz coluvionar (argilo – arenosa), o que interferiu negativamente no processo de infiltração. Relacionando todos os pontos com os respectivos resultados verifica-se que a Serra do Gandarela é uma região importante para o processo de recarga hídrica da região metropolitana de Belo Horizonte. </em></p><p>ABSTRACT</p><p><em>Serra do Gandarela presents one of the biggest hydric stock of the Ferriferous Quadrangle and its aquifers are of utmost importance for draining areas of these existing watersheds.It has a great conservation degree, natural beauties, a great biodiversity. It's a region wich shelters several vegetal endemic species and the « canga », ferruginous outcrops, which is one of the most endangered ecological systems in Brazil. <br /> This article aims to work the relationship between the soil surface, covers the Serra do Gandarela and the hydrological behavior of the same, demonstrating the field capacity, water storage,and water infiltration rates of each chozen location. Of the three selected points two showed good results as to water recharge. The first point by presenting a slow infiltration and percolation system and the second point for infiltrating large amount of water. The third point presented a lower infiltration rate by having the texture of the cementitious matrix of the colluvial (clayey - sandy) which negatively interfere with the infiltration process. Listing all the points with the results it appears that the Serra do Gandarela is an important region for the water refilling process of the metropolitan region of Belo Horizonte.</em></p>


Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 191 ◽  
Author(s):  
Meni Ben-Hur ◽  
Marcos Lado

Soil surface sealing is one of the main causes for low infiltration rate (IR) and high runoff and soil loss under raindrop impact conditions in arid and semiarid regions. Many studies have focused on the effects of soil properties on seal formation under fast wetting conditions. However, in the field, soils can be exposed to different wetting conditions, before an intense rainfall event, which can affect the role of the soil properties on seal formation. The present paper reviews the effects of different initial wetting conditions and their interactions with soil properties on seal formation, IR, runoff, and soil loss in smectitic soils. Fast wetting of soil causes aggregate slaking, which enhances seal formation, runoff, and soil loss under rainfall, mainly in soils with > 40% clay content. An increase in clay content of the soil increases aggregate strength, but at the same time increases the slaking forces. Hence, in soils with low clay content (<40%) and low aggregate stability, raindrop impact alone was sufficient to break down the aggregates and to develop a seal. In contrast, in soils with > 40% clay content and high aggregate stability, slaking plays an important role in aggregate breakdown and seal formation. An increase of raindrop kinetic energy, from 8 to 15.9 kJ/m3, decreased the effect of the slaking forces on seal formation and runoff. It was suggested that the effects of raindrop kinetic energy and of the slaking forces on aggregate disintegration and seal formation are complementary. An increase in soil exchangeable sodium percentage (ESP), from 0.9 to 20.4%, decreased the effect of slaking forces on seal formation and runoff production under rainfall with 15.9 kJ/m3 kinetic energy. Probably, increasing the ESP increased the soil dispersivity, and therefore diminished the effect of the slaking forces on aggregate disintegration and seal formation. Aging (the time since wetting) of soil increased the stability of soil structure, decreased the seal formation, maintained high IR, and diminished soil loss amounts. These effects of soil aging depend on both the prewetting rate of the soil and soil texture.


Author(s):  
Fábio F. da Silva ◽  
Thais E. M. dos S. Souza ◽  
Edivan R. de Souza ◽  
Marcelo M. Correa ◽  
Mário M. Rolim

ABSTRACT Evaluating soil sealing process of the semi-arid region of Brazil is important to describe this process and mitigate its effects. The objective of this work was to evaluate surface sealing and physical properties of the main soils of the Upper Ipanema watershed, in Pesqueira, Pernambuco state, Brazil, with the use of mulch. The experiment was conducted in a completely randomized design with three replications, using a 3 × 3 × 2 factorial arrangement consisted of three soil classes (abruptic Eutrophic Yellow Argissolo - AEYA, typical Eutrophic Fluvic Neossolo - TEFN, and typical Eutrophic Yellow Argissolo - TEYA), three application times of simulated rainfalls (at 0, 24, and 48 h), and two mulching conditions (with and without mulch), totaling 54 tests. Soil erosion rates, surface sealing, and resistance to penetration were evaluated. The use of mulch decreased significantly the soil water losses by 71.9% (AEYA), 62.9% (TEFN), and 41.1% (TEYA) after the first rainfall application (0 h) when compared to treatments without mulch, and promoted a higher water infiltration rate. The lowest soil resistance to penetration were found in soils with mulch. The AEYA and TEFN presented changes in porosity and migration of fine particles in the treatment without mulch. The TENF was the only soil that presented an incipient soil surface sealing layer in the treatment without mulch.


2021 ◽  
Author(s):  
Thuc Nguyen ◽  
Gilboa Arye

&lt;p&gt;Surfactants have been long used to aid water infiltration into hydrophobic soils since it can reduce the surface tension of water and consequently, the contact angle (CA) form at the solid-liquid-air interface. The degree of soil hydrophobicity is commonly engaged with direct or indirect measurements of the apparent initial advancing CA which is not necessarily correlated with infiltration characteristics of aqueous surfactant solutions. The main objective of this study was to quantify the dynamics of surfactant drop penetration into hydrophobic soils. Three surfactants were examined: anionic (SDS), cationic (CTAB), and nonionic (TX100) at aqueous concentrations of 0.4, 0.8, 1, and 2 C/CMC (where C is the bulk concentration and CMC is critical micelle concentration). Sand with the particle size distribution of 100-210, 425-500, and 600-700 &amp;#956;m was hydrophobized using Leonardite (IHSS). Each run was initiated by placing a 30 &amp;#956;L droplet on the soil surface that was packed into quartz cuvette (2.5&amp;#215;2.5&amp;#215;4 cm). The droplet infiltration dynamics were monitored by an optical goniometer (OCA 20, DataPhysics, Germany), specifically, the drop height, drop base diameter, and CA as a function of time. Notable differences between droplet infiltration characteristics of the three surfactants could be observed. For a given particle fraction, the TX100 and SDS, at concentrations above and below the CMC, the CA and drop height decreased while the drop base diameter increased, suggesting that spreading took place during infiltration. For the CTAB, a significant lag-phase could be observed for all quantities, ranging from 100 to 1000. Following this phase, the drop height and CA showed a relatively gradual decrease while the base diameter exhibited minor changes, suggesting minor changes in solution spreading on the soil surface. Additional observation and interpretation on infiltration characteristics of aqueous surfactants solution will be presented and their implications for enhanced infiltration rate in hydrophobic soils will be discussed. &amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;


2020 ◽  
Author(s):  
Timo Breure ◽  
Alice Milne ◽  
Richard Webster ◽  
Stephan M. Haefele ◽  
Jacqueline A. Hannam ◽  
...  

&lt;p&gt;Spectral measurements are increasingly used to predict soil properties. Libraries of soil spectra are built and statistical models are used to relate the spectra to wet chemistry measurements. These relationships can then be used to predict the properties of new samples. An important&amp;#160; consideration is the uncertainty associated with the prediction. Often to reduce this error calibration is done at field level. This is time and resource intensive, however, and there is scope to use existing spectral libraries. Our aim was to quantify the uncertainty in the prediction of soil properties from spectral measurements using a local library and compare this to predictions made using a regional library. &amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;To investigate this, we considered two case study fields in the Cambridgeshire fens (UK) that were planted with lettuce. These fields contain complex soils which are a combination of peat with underlying alluvial and marine silts that became elevated features in the landscape due to peat oxidation and shrinkage. These elevated features are captured by a 2 m x 2 m LiDAR raster used in our study (UK Environment Agency). We took a total 467 soil samples across the fields and made spectral measurements (near- and mid-infrared). A subset of the soil samples underwent wet chemistry analysis for available pH, P, K, total N and soil particle size fraction. For the regional library we use soil the National Soil Inventory spectral database and its respective wet chemistry reference values.&lt;/p&gt;&lt;p&gt;We used partial least squares to regress the soil spectra for the local and regional spectral libraries against the wet chemistry reference values. These two models were then used to predict the soil properties for both fields. We then mapped the variation in each soil property and the associated uncertainty by kriging. &amp;#160;The variation in some of the soil variables was clearly affected by elevation and there were signs of spatial trend and so we used universal kriging to map the soil properties. To reduce bias, we used residual maximum likelihood estimation (REML) to estimate the variogram by fitting a linear mixed model with the trend accounted for as fixed effects. &amp;#160;We compared these different maps to assess how the calibration regression from local and regional spectral libraries translates itself in uncertainty of kriged maps for five different soil properties within each field.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document