Research on Error Correction and Integration Methods of Maximum and Minimum Temperature Forecast Based on Multi –model in arid area

Author(s):  
Jia lihong

<p>It is very difficult to predict accurate temperature, especially for maximum and minimum temperature, due to the large diurnal temperature range in arid area. Based on the temperature forecast products from ECMWF, T639, DOGRAFS and GRAPES models and hourly temperature observations at 105 automatic weather stations in Xinjiang during 2013~2015, two kinds of error correction and integration schemes were designed by using the decaying averaging method, ensemble average and weighted ensemble average method, the effects of error correction and integration on predicted maximum and minimum temperature in fore seasons in different partitions Xinjiang were tested contrastively. The first scheme was integrating forecast temperature before correcting errors, while the second scheme was correcting forecast errors firstly and then giving an integration. The results are follows as: (1)The accuracy of temperature predictions from ECMWF model was the best in Xinjiang as a whole, while that from DOGRAFS model was the worst, and the improvement to minimum temperature predictions was higher than that of maximum temperature prediction. (2) With regarding to different partitions Xinjiang, the accuracies of predicted maximum and minimum temperature in northern Xinjiang, west region and plain areas were correspondingly higher than those in southern Xinjiang, east region and mountain areas, and the correction capability to temperature prediction in winter was higher than that in other seasons. (3) The integrated prediction of maximum and minimum temperature by weighted ensemble average method was better than that of ensemble average method. The second scheme was superior to the first scheme. (4) The improvement to maximum(minimum) temperature prediction in the extreme high(low) temperature event process from 13 to 30 July 2017(from 22 to 24 April 2014) in Xinjiang was significant by using the second scheme.</p>

2011 ◽  
Vol 6 (1) ◽  
pp. 211-217
Author(s):  
S. Federico ◽  
E. Avolio ◽  
F. Fusto ◽  
R. Niccoli ◽  
C. Bellecci

Abstract. Since June 2008, 1-h temperature forecasts for the Calabria region (Southern Italy) are issued at 2.5 km horizontal resolution at CRATI/ISAC-CNR. Forecasts are available online at http://meteo.crati.it/previsioni.html (every 6-h). This paper shows the forecast performance out to three days for one climatological year (from 1 December 2008 to 30 November 2009, 365 run) for minimum, mean and maximum temperature. The forecast is evaluated against gridded analyses at the same horizontal resolution. Gridded analysis is based on Optimal Interpolation (OI) and uses a de-trending technique for computing the background field. Observations from 87 thermometers are used in the analysis system. In this paper cumulative statistics are shown to quantify forecast errors out to three days.


2010 ◽  
Vol 138 (12) ◽  
pp. 4402-4415 ◽  
Author(s):  
Paul J. Roebber

Abstract Simulated evolution is used to generate consensus forecasts of next-day minimum temperature for a site in Ohio. The evolved forecast algorithm logic is interpretable in terms of physics that might be accounted for by experienced forecasters, but the logic of the individual algorithms that form the consensus is unique. As a result, evolved program consensus forecasts produce substantial increases in forecast accuracy relative to forecast benchmarks such as model output statistics (MOS) and those from the National Weather Service (NWS). The best consensus produces a mean absolute error (MAE) of 2.98°F on an independent test dataset, representing a 27% improvement relative to MOS. These results translate to potential annual cost savings for electricity production in the state of Ohio of the order of $2 million relative to the NWS forecasts. Perfect forecasts provide nearly $6 million in additional annual electricity production cost savings relative to the evolved program consensus. The frequency of outlier events (forecast busts) falls from 24% using NWS to 16% using the evolved program consensus. Information on when busts are most likely can be provided through a logistic regression equation with two variables: forecast wind speed and the deviation of the NWS minimum temperature forecast from persistence. A forecast of a bust is 4 times more likely to be correct than wrong, suggesting some utility in anticipating the most egregious forecast errors. Discussion concerning the probabilistic applications of evolved programs, the application of this technique to other forecast problems, and the relevance of these findings to the future role of human forecasting is provided.


2021 ◽  
Author(s):  
Zhiqiang Pang ◽  
Zhaoxu Wang

Abstract In this study, temporIn this study, temporal trend analysis was conducted on the annual and quarterly meteorological variables of Lanzhou from 1951 to 2016, and a weighted Markov model for extremely high-temperature prediction was constructed. Several non-parametric methods were used to analyze the time trend. Considering that sequence autocorrelation may affect the accuracy of the trend test, we performed an autocorrelation test and carried out trend analysis for sequences with autocorrelation after removing correlation. The results show that the maximum temperature, minimum temperature, and average temperature in Lanzhou have a significant rising trend and show different performances in each season. In detail, the maximum temperature in summer does not have a significant change trend, while the minimum temperature in winter is the most significant rising trend, which leads to more and more ”warm winter” phenomenon. Finally, we construct a weighted Markov prediction model for extremely high temperatures and obtain the conclusion that the prediction results by the model are consistent with the real situation. and show different performances in each season. In detail, the maximum temperature in summer does not have a significant change trend, while the minimum temperature in winter is the most significant rising trend, which leads to more and more ”warm winter” phenomenon. Finally, we construct a weighted Markov prediction model for extremely high temperatures and obtain the conclusion that the prediction results by the model are consistent with the real situation.


2018 ◽  
Vol 6 (1) ◽  
pp. 102-106
Author(s):  
Sevak Das ◽  
A. I. Desai

The medium range weather forecast issued from NCMRWF, Noida on rainfall, maximum temperature, minimum temperature and wind speed for the last 18 years (1999-2016) has been verified with observed weather parameters recorded at agrometeorological observatory, Sardarkrushinagar to known its accuracy. The results revealed that the usability of rainfall was higher in pre monsoon, post monsoon and winter seasons. However, during monsoon, the accuracy of rainfall forecast was 78 percent with RMSE value of 15.3 that indicated the lower accuracy. The maximum temperature forecast accuracy was very good varied from 76 to 88% in different seasons. Similarly, minimum temperature forecast was excellent in monsoon season (88%), and poor in winter season (57%). The wind speed forecast was excellent in all the seasons.


2005 ◽  
Vol 20 (6) ◽  
pp. 1006-1020 ◽  
Author(s):  
Andrew A. Taylor ◽  
Lance M. Leslie

Abstract Error characteristics of model output statistics (MOS) temperature forecasts are calculated for over 200 locations around the continental United States. The forecasts are verified on a station-by-station basis for the year 2001. Error measures used include mean algebraic error (bias), mean absolute error (MAE), relative frequency of occurrence of bias and MAE values, and the daily forecast errors themselves. A case study examining the spatial and temporal evolution of MOS errors is also presented. The error characteristics presented here, together with the case study, provide a more detailed evaluation of MOS performance than may be obtained from regionally averaged error statistics. Knowledge concerning locations where MOS forecasts have large errors or biases and why those errors or biases exist is of great value to operational forecasters. Not only does such knowledge help improve their forecasts, but forecaster performance is often compared to MOS predictions. Examples of biases in MOS forecast errors are illustrated by examining two stations in detail. Significant warm and cold biases are found in maximum temperature forecasts for Los Angeles, California (LAX), and minimum temperature forecasts for Las Vegas, Nevada (LAS), respectively. MAE values for MOS temperature predictions calculated in this study suggest that coastal stations tend to have lower MAE values and lower variability in their errors, while forecasts with high MAE and error variability are more frequent in the interior of the United States. Therefore, MAE values from samples of MOS forecasts are directly proportional to the variance in the observations. Additionally, it is found that daily maximum temperature forecast errors exhibit less variability during the summer months than they do over the rest of the year, and that forecasts for any one station rarely follow a consistent temporal pattern for more than two or three consecutive days. These inconsistent error patterns indicate that forecasting temperatures based on recent trends in MOS forecast errors at an individual station is usually not a good strategy. As shown in earlier studies by other authors and demonstrated again here, MOS temperature forecasts are often inaccurate in the vicinity of strong temperature gradients, for locations affected by shallow cold air masses, or for stations in regions of anomalously warm or cold temperatures. Finally, a case study is presented examining the spatial and temporal distributions of MOS temperature forecast errors across the United States from 13 to 15 February 2001. During this period, two surges of cold arctic air moved south into the United States. In contrast to error trends at individual stations, nationwide spatial and temporal patterns of MOS forecast errors could prove to be a powerful forecasting tool. Nationwide plots of errors in MOS forecasts would be useful if made available in real time to operational forecasters.


2021 ◽  
Vol 13 (5) ◽  
pp. 913
Author(s):  
Hua Liu ◽  
Xuejian Li ◽  
Fangjie Mao ◽  
Meng Zhang ◽  
Di’en Zhu ◽  
...  

The subtropical vegetation plays an important role in maintaining the structure and function of global ecosystems, and its contribution to the global carbon balance are receiving increasing attention. The fractional vegetation cover (FVC) as an important indicator for monitoring environment change, is widely used to analyze the spatiotemporal pattern of regional and even global vegetation. China is an important distribution area of subtropical vegetation. Therefore, we first used the dimidiate pixel model to extract the subtropical FVC of China during 2001–2018 based on MODIS land surface reflectance data, and then used the linear regression analysis and the variation coefficient to explore its spatiotemporal variations characteristics. Finally, the partial correlation analysis and the partial derivative model were used to analyze the influences and contributions of climate factors on FVC, respectively. The results showed that (1) the subtropical FVC had obvious spatiotemporal heterogeneity; the FVC high-coverage and medium-coverage zones were concentratedly and their combined area accounted for more than 70% of the total study area. (2) The interannual variation in the average subtropical FVC from 2001 to 2018 showed a significant growth trend. (3) In 76.28% of the study area, the regional FVC showed an increasing trend, and the remaining regional FVC showed a decreasing trend. However, the overall fluctuations in the FVC (increasing or decreasing) in the region were relatively stable. (4) The influences of climate factors to the FVC exhibited obvious spatial differences. More than half of all pixels exhibited the influence of the average annual minimum temperature and the annual precipitation had positive on FVC, while the average annual maximum temperature had negative on FVC. (5) The contributions of climate changes to FVC had obvious heterogeneity, and the average annual minimum temperature was the main contribution factor affecting the dynamic variations of FVC.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sierra Cheng ◽  
Rebecca Plouffe ◽  
Stephanie M. Nanos ◽  
Mavra Qamar ◽  
David N. Fisman ◽  
...  

Abstract Background Suicide is among the top 10 leading causes of premature morality in the United States and its rates continue to increase. Thus, its prevention has become a salient public health responsibility. Risk factors of suicide transcend the individual and societal level as risk can increase based on climatic variables. The purpose of the present study is to evaluate the association between average temperature and suicide rates in the five most populous counties in California using mortality data from 1999 to 2019. Methods Monthly counts of death by suicide for the five counties of interest were obtained from CDC WONDER. Monthly average, maximum, and minimum temperature were obtained from nCLIMDIV for the same time period. We modelled the association of each temperature variable with suicide rate using negative binomial generalized additive models accounting for the county-specific annual trend and monthly seasonality. Results There were over 38,000 deaths by suicide in California’s five most populous counties between 1999 and 2019. An increase in average temperature of 1 °C corresponded to a 0.82% increase in suicide rate (IRR = 1.0082 per °C; 95% CI = 1.0025–1.0140). Estimated coefficients for maximum temperature (IRR = 1.0069 per °C; 95% CI = 1.0021–1.0117) and minimum temperature (IRR = 1.0088 per °C; 95% CI = 1.0023–1.0153) were similar. Conclusion This study adds to a growing body of evidence supporting a causal effect of elevated temperature on suicide. Further investigation into environmental causes of suicide, as well as the biological and societal contexts mediating these relationships, is critical for the development and implementation of new public health interventions to reduce the incidence of suicide, particularly in the face increasing temperatures due to climate change.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 489
Author(s):  
Jinxiu Liu ◽  
Weihao Shen ◽  
Yaqian He

India has experienced extensive land cover and land use change (LCLUC). However, there is still limited empirical research regarding the impact of LCLUC on climate extremes in India. Here, we applied statistical methods to assess how cropland expansion has influenced temperature extremes in India from 1982 to 2015 using a new land cover and land use dataset and ECMWF Reanalysis V5 (ERA5) climate data. Our results show that during the last 34 years, croplands in western India increased by ~33.7 percentage points. This cropland expansion shows a significantly negative impact on the maxima of daily maximum temperature (TXx), while its impacts on the maxima of daily minimum temperature and the minima of daily maximum and minimum temperature are limited. It is estimated that if cropland expansion had not taken place in western India over the 1982 to 2015 period, TXx would likely have increased by 0.74 (±0.64) °C. The negative impact of croplands on reducing the TXx extreme is likely due to evaporative cooling from intensified evapotranspiration associated with croplands, resulting in increased latent heat flux and decreased sensible heat flux. This study underscores the important influences of cropland expansion on temperature extremes and can be applicable to other geographic regions experiencing LCLUC.


Sign in / Sign up

Export Citation Format

Share Document