Fast determination of surface water mass changes using regional orthogonal functions

Author(s):  
Guillaume Ramillien ◽  
Lucia Seoane

<p>Approaches based on Stokes coefficient filtering and « mass concentration » representations have been proposed for recovering changes of the surface water mass density from along-track accurate GRACE K-Band Range Rate (KBRR) measurements of geopotential change. The number of parameters, i.e. surface triangular tiles of water mass, to be determined remains large and the choice of the regularization strategy as the gravimetry inverse problem is non unique. In this study, we propose to use regional sets of orthogonal surface functions to image the structure of the surface water mass density variations. Since the number of coefficients of the development is largely smaller than the number of tiles, the computation of daily GRACE solutions for continental hydrology, e.g. obtained by Extended Kalman Filtering (EKF), is greatly fastened and eased by the matrix dimensions and conditioning. The proposed scheme of decomposition is applied to the African continent where it enables to very localized sources of (sub-)monthly water mass amplitudes.</p>

2021 ◽  
Author(s):  
Guillaume Ramillien ◽  
Lucia Seoane ◽  
José Darrozes

<p>We investigate the possibility to use the Low-Earth Orbiter mission well known as GRACE to detect sudden regional variations of water mass storage caused by heavy precipitation and flooding episodes caused by the passage of tropical hurricanes of categories 4-5 (from day to a week). For this purpose, daily water mass solutions are produced from along-track GRACE geopotential anomalies to catch the signatures of these intense meteorological events. These geopotential variations are derived from accurate inter-satellite K-Band Range Rate (KBRR) measurements made along the 5-second orbits by imposing the total energy conservation to the twin GRACE vehicles. The determination of these surface sources is made over a regional network of juxtaposed triangular tiles of quasi-constant areas, and they are refreshed by a Kalman filtering for integrating progressively daily geopotential observations. These latter data have been previously reduced from known gravitational effects of atmosphere and oceanic masses (including periodic tides) for isolating the continental hydrology contribution. Our estimates of regional hydrological impacts are also compared to the ones obtained by synthesis of daily degree-40 Stokes coefficients provided by ITSG, Graz.</p>


2020 ◽  
Vol 12 (8) ◽  
pp. 1299
Author(s):  
Guillaume Ramillien ◽  
Lucía Seoane ◽  
Maike Schumacher ◽  
Ehsan Forootan ◽  
Frédéric Frappart ◽  
...  

We demonstrate a new approach to recover water mass changes from GRACE satellite data at a daily temporal resolution. Such a product can be beneficial in monitoring extreme weather events that last a few days and are missing by conventional monthly GRACE data. The determination of the distribution of these water mass sources over networks of juxtaposed triangular tiles was made using Kalman Filtering (KF) of daily GRACE geopotential difference observations that were reduced for isolating the continental hydrology contribution of the measured gravity field. Geopotential differences were obtained from the along-track K-Band Range Rate (KBRR) measurements according to the method of energy integral. The recovery approach was validated by inverting synthetic GRACE geopotential differences simulated using GLDAS/WGHM global hydrology model outputs. Series of daily regional and global KF solutions were estimated from real GRACE KBRR data for the period 2003–2012. They provide a realistic description of hydrological fluxes at monthly time scales, which are consistent with classical spherical harmonics and mascons solutions provided by the GRACE official centers but also give an intra-month/daily continuity of these variations.


2011 ◽  
Vol 85 (6) ◽  
pp. 313-328 ◽  
Author(s):  
Guillaume Ramillien ◽  
R. Biancale ◽  
S. Gratton ◽  
X. Vasseur ◽  
S. Bourgogne

2003 ◽  
Vol 1 ◽  
pp. 33-38 ◽  
Author(s):  
J. Müller ◽  
M. Wermut

Abstract. The objective of GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) is the determination of the Earth’s gravity field with high spatial resolution. The main science sensor (the gradiometer) measures differential accelerations, from which the gravitational gradients, i.e. the matrix of the second derivatives of the gravitational potential, are derived. Some of them (the diagonal components of the gravitational tensor) are observed with highest accuracy, 4 mE/√Hz in a frequency range from 5 mHz to 100 mHz, whereas the off-diagonals are obtained less accurately. The gradients will be observed in the instrument frame, which approximates the along-track oriented, local orbital frame. For the transformation of the gradients in other frames (e.g. in the strictly earth-pointing frame or a local geodetic frame), the transformation parameters (orientation angles) and all components of the gravity tensor have to be known with sufficient accuracy. We show how the elements of the gravitational tensor and their accuracies look like in the various frames as well as their spectral behaviour, if only the GOCE observations are used for the transformation. Only V'zz keeps approximately its original accuracy in all frames discussed, except in the earth-fixed frame ITRF (International Terrestrial Reference Frame). Therefore we recommend to analyse the gradients as ‘close’ as possible in the observation frame.Key words. Satellite gradiometry, GOCE mission, reference frames, transformation errors


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hirotomo Noda ◽  
Hiroki Senshu ◽  
Koji Matsumoto ◽  
Noriyuki Namiki ◽  
Takahide Mizuno ◽  
...  

AbstractIn this study, we determined the alignment of the laser altimeter aboard Hayabusa2 with respect to the spacecraft using in-flight data. Since the laser altimeter data were used to estimate the trajectory of the Hayabusa2 spacecraft, the pointing direction of the altimeter needed to be accurately determined. The boresight direction of the receiving telescope was estimated by comparing elevations of the laser altimeter data and camera images, and was confirmed by identifying prominent terrains of other datasets. The estimated boresight direction obtained by the laser link experiment in the winter of 2015, during the Earth’s gravity assist operation period, differed from the direction estimated in this study, which fell on another part of the candidate direction; this was not selected in a previous study. Assuming that the uncertainty of alignment determination of the laser altimeter boresight was 4.6 pixels in the camera image, the trajectory error of the spacecraft in the cross- and/or along-track directions was determined to be 0.4, 2.1, or 8.6 m for altitudes of 1, 5, or 20 km, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4357
Author(s):  
Waritda Pookmanee ◽  
Siriwan Thongthip ◽  
Jeeranut Tankanitlert ◽  
Mathirut Mungthin ◽  
Chonlaphat Sukasem ◽  
...  

The method for the determination of primaquine (PQ) and 5,6-orthoquinone primaquine (5,6-PQ), the representative marker for PQ active metabolites, via CYP2D6 in human plasma and urine has been validated. All samples were extracted using acetonitrile for protein precipitation and analyzed using the ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) system. Chromatography separation was carried out using a Hypersil GOLDTM aQ C18 column (100 × 2.1 mm, particle size 1.9 μm) with a C18 guard column (4 × 3 mm) flowed with an isocratic mode of methanol, water, and acetonitrile in an optimal ratio at 0.4 mL/min. The retention times of 5,6-PQ and PQ in plasma and urine were 0.8 and 1.6 min, respectively. The method was validated according to the guideline. The linearity of the analytes was in the range of 25–1500 ng/mL. The matrix effect of PQ and 5,6-PQ ranged from 100% to 116% and from 87% to 104% for plasma, and from 87% to 89% and from 86% to 87% for urine, respectively. The recovery of PQ and 5,6-PQ ranged from 78% to 95% and form 80% to 98% for plasma, and from 102% to from 112% to 97% to 109% for urine, respectively. The accuracy and precision of PQ and 5,6-PQ in plasma and urine were within the acceptance criteria. The samples should be kept in the freezer (−80 °C) and analyzed within 7 days due to the metabolite stability. This validated UHPLC-MS/MS method was beneficial for a pharmacokinetic study in subjects receiving PQ.


Sign in / Sign up

Export Citation Format

Share Document