Counterfactual hydrological pesticide transport modelling: Can we detect long-term in-stream pesticide trends due to mitigation?

Author(s):  
Reynold Chow ◽  
Ruth Sceidegger ◽  
Tobias Doppler ◽  
Anne Dietzel ◽  
Fabrizio Fenicia ◽  
...  

<p>In many countries, agroecological schemes are implemented in order to reduce water quality impairment from agricultural pesticide use. However, demonstrating the success or failure of these schemes is challenging because other influencing factors can confound their effects. For instance, in-stream pesticide concentrations have been found to vary greatly due to the interannual variability in weather conditions (e.g., the timing, intensity, and duration of precipitation events) and pesticide application practices (e.g., the variability in timing and spatial application of differing pesticides that have different chemical properties).</p><p>Our current work aims to investigate the necessary conditions to detect significant trends in pesticide concentrations in the context of the Swiss National Action Plan (NAP), which aims to halve the pesticide risk from agricultural activities within Swiss river networks by 2027. We use a modelling approach to explore possibilities and limitations of the existing monitoring scheme for separating long-term effects of the NAP from interannual variability due to weather conditions. For that purpose, we use an existing model for simulating pesticide transport at the catchment scale. After calibration, we simulated 10 years of herbicide concentrations with and without (i.e., the counterfactual) an assumed 50% reduction of the pesticide applied and evaluated the resulting concentration levels.</p><p>Our results indicate that the interannual variability due to weather conditions can exceed even a 50% change in pesticide application. This implies that the concentration levels themselves are insufficient to demonstrate the effectiveness of the NAP within a reasonable time horizon of a decade. This is because the lowering of in-stream pesticide concentrations may be due to the timing and intensity of precipitation relative to the application of pesticides and not from the effectiveness of pesticide mitigation measures. Therefore, we explore ways to account for the weather effects on the pesticide concentration levels. Furthermore, we found that comparing the pesticide concentrations in years that have both above average precipitation during pesticide application periods and contain precipitation events that occur shortly after pesticide application can lead to more robust statements about the effectiveness of the mitigation measures. Preliminary double mass analyses of cumulative rainfall during the application period versus cumulative maximum concentrations suggest that significant trends can be identified with 11 years of data (6 years before NAP implementation and 5 years into it). We are currently exploring how sensitive our results are to pesticide properties, such as sorption and degradation half-lives.</p>

2021 ◽  
Author(s):  
Clément Fabre ◽  
Reynold Chow ◽  
Ruth Scheidegger ◽  
Tobias Doppler ◽  
Anne Dietzel ◽  
...  

<p>Agroecological schemes are implemented worldwide in order to reduce water quality impairment from agricultural pesticide use. However, evaluating the success or failure of these schemes is challenging because other influencing factors can confound their effects. For instance, aquatic pesticide pollution has been found to vary greatly due to the interannual variability in weather conditions (e.g., the timing, intensity, and duration of precipitation events) and changes in pesticide application practices (e.g., changing pest pressure, phasing-out and replacement of specific products, development of pesticide resistance).</p><p>Our research investigates the necessary conditions to detect significant trends in pesticide concentrations in the context of the Swiss National Action Plan (NAP), which aims to halve aquatic pesticide pollution risk from agricultural pesticide use within Swiss river networks by 2027.</p><p>We base our analyses for temporal trends on a calibrated model for pesticide transport at the catchment scale, which we use to separate the long-term effects of the NAP from interannual variability due to weather conditions. Our results indicate that the interannual variability due to weather conditions can override the effects of even a 50% reduction in pesticide application for rain-driven input. This implies that the concentration levels themselves may be insufficient to demonstrate the effectiveness of the NAP within a reasonable time horizon of a decade. This is because the lowering of in-stream pesticide concentrations can be due to the timing and intensity of precipitation relative to the application of pesticides and not from the effectiveness of pesticide mitigation measures. Therefore, we have further explored potential methods to account for the weather effects on the pesticide concentration levels. Accounting for the weather conditions by considering the dependence of concentration levels on discharge conditions during the application period improves the statistical power to detect trends.</p><p>Furthermore, we assess the potential to extrapolate the trends observed at 23 monitoring sites from different catchments (varying in size 1 km<sup>2</sup> to > 20,000 km<sup>2</sup>) across Switzerland to the entire Swiss river network. As a first step, we analyzed substances applied to corn because this crop is widespread in the country, is easy to follow as herbicides are applied only once a year, and only a few pesticides are applied. The analysis revealed that for some of these corn herbicides, the seasonal patterns were consistent across many catchments and in agreement with the crop specific expectations. However, for other herbicides we identified regional patterns with unexpected concentration peaks in the fall. This observation requires more detailed inquiries in regional use patterns and highlights the need to account for regionalized pesticide use when extrapolating monitoring data to larger scales.</p>


1989 ◽  
Vol 21 (8-9) ◽  
pp. 1015-1024 ◽  
Author(s):  
C. P. Crockett ◽  
R. W. Crabtree ◽  
I. D. Cluckie

In England and Wales the placing of effluent discharge consents within a statistical framework has led to the development of a new hybrid type of river quality model. Such catchment scale consent models have a stochastic component for the generation of model inputs and a deterministic component to route them through the river system. This paper reviews and compares the existing approaches for consent modelling used by various Water Authorities. A number of possible future developments are suggested including the potential need for a national approach to the review and setting of long term consents.


2021 ◽  
Vol 13 (10) ◽  
pp. 5685
Author(s):  
Panbo Guan ◽  
Hanyu Zhang ◽  
Zhida Zhang ◽  
Haoyuan Chen ◽  
Weichao Bai ◽  
...  

Under the Air Pollution Prevention and Control Action Plan (APPCAP) implemented, China has witnessed an air quality change during the past five years, yet the main influence factors remain relatively unexplored. Taking the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions as typical cluster cities, the Weather Research Forecasting (WRF) and Comprehensive Air Quality Model with Extension (CAMx) were introduced to demonstrate the meteorological and emission contribution and PM2.5 flux distribution. The results showed that the PM2.5 concentration in BTH and YRD significantly declined with a descend ratio of −39.6% and −28.1%, respectively. For the meteorological contribution, those regions had a similar tendency with unfavorable conditions in 2013–2015 (contribution concentration 1.6–3.8 μg/m3 and 1.1–3.6 μg/m3) and favorable in 2016 (contribution concentration −1.5 μg/m3 and −0.2 μg/m3). Further, the absolute value of the net flux’s intensity was positively correlated with the degree of the favorable/unfavorable weather conditions. When it came to emission intensity, the total net inflow flux increased, and the outflow flux decreased significantly across the border with the emission increasing. In short: the aforementioned results confirmed the effectiveness of the regional joint emission control and provided scientific support for the proposed effective joint control measures.


2021 ◽  
Vol 13 (3) ◽  
pp. 1514
Author(s):  
Rebecca Peters ◽  
Jürgen Berlekamp ◽  
Ana Lucía ◽  
Vittoria Stefani ◽  
Klement Tockner ◽  
...  

Mitigating climate change, while human population and economy are growing globally, requires a bold shift to renewable energy sources. Among renewables, hydropower is currently the most economic and efficient technique. However, due to a lack of impact assessments at the catchment scale in the planning process, the construction of hydropower plants (HPP) may have unexpected ecological, socioeconomic, and political ramifications in the short and in the long term. The Vjosa River, draining parts of Northern Greece and Albania, is one of the few predominantly free-flowing rivers left in Europe; at the same time its catchment is identified an important resource for future hydropower development. While current hydropower plants are located along tributaries, planned HPP would highly impact the free-flowing main stem. Taking the Vjosa catchment as a case study, the aim of this study was to develop a transferable impact assessment that ranks potential hydropower sites according to their projected impacts on a catchment scale. Therefore, we integrated established ecological, social, and economic indicators for all HPP planned in the river catchment, while considering their capacity, and developed a ranking method based on impact categories. For the Vjosa catchment, ten hydropower sites were ranked as very harmful to the environment as well as to society. A sensitivity analysis revealed that this ranking is dependent upon the selection of indicators. Small HPP showed higher cumulative impacts than large HPP, when normalized to capacity. This study empowers decision-makers to compare both the ranked impacts and the generated energy of planned dam projects at the catchment scale.


Author(s):  
Niket M. Telang ◽  
Charles M. Minervino ◽  
Paul G. Norton

Elegantly poised over the Mobile River, the twin pylons and the semi-harped cable stays of the Cochrane Bridge subtly complement the vast and undulating landscape of the Mobile Bay as the bridge carries US Route 90 over the Mobile River in Alabama. In February 1998, light rain drizzled on the bridge, and a weather station nearby recorded wind speeds of about 48 km/h (30 mph). Under these seemingly mild weather conditions, the normally immobile cable stays started to vibrate, and within moments, these nascent vibrations reached amplitudes of more than 1.2 m (4 ft). Alarmed by this event, the Alabama Department of Transportation (ALDOT) took immediate action to ensure the continued safety and serviceability of the bridge. A team of consultants was selected by ALDOT to investigate mitigation measures for the large-amplitude cable-stay vibrations. The fast-tracked comprehensive program planned and implemented to inspect, test, document, and evaluate the effects of the large-amplitude vibrations and the recommendation of retrofit measures that would limit future occurrences of such cable-stay vibrations on the Cochrane Bridge are described in detail.


2021 ◽  
Author(s):  
Sophie de Bruin ◽  
Jannis Hoch ◽  
Nina von Uexkull ◽  
Halvard Buhaug ◽  
Nico Wanders

<p>The socioeconomic impacts of changes in climate-related and hydrology-related factors are increasingly acknowledged to affect the on-set of violent conflict. Full consensus upon the general mechanisms linking these factors with conflict is, however, still limited. The absence of full understanding of the non-linearities between all components and the lack of sufficient data make it therefore hard to address violent conflict risk on the long-term. </p><p>Although it is neither desirable nor feasible to make exact predictions, projections are a viable means to provide insights into potential future conflict risks and uncertainties thereof. Hence, making different projections is a legitimate way to deal with and understand these uncertainties, since the construction of diverse scenarios delivers insights into possible realizations of the future.  </p><p>Through machine learning techniques, we (re)assess the major drivers of conflict for the current situation in Africa, which are then applied to project the regions-at-risk following different scenarios. The model shows to accurately reproduce observed historic patterns leading to a high ROC score of 0.91. We show that socio-economic factors are most dominant when projecting conflicts over the African continent. The projections show that there is an overall reduction in conflict risk as a result of increased economic welfare that offsets the adverse impacts of climate change and hydrologic variables. It must be noted, however, that these projections are based on current relations. In case the relations of drivers and conflict change in the future, the resulting regions-at-risk may change too.   By identifying the most prominent drivers, conflict risk mitigation measures can be tuned more accurately to reduce the direct and indirect consequences of climate change on the population in Africa. As new and improved data becomes available, the model can be updated for more robust projections of conflict risk in Africa under climate change.</p>


2018 ◽  
Vol 69 (12) ◽  
pp. 1805 ◽  
Author(s):  
Lee J. Baumgartner ◽  
Arif Wibowo

Development activities threaten the long-term sustainability of tropical floodplain systems. The construction of dams, weirs, irrigation infrastructure and regulators affect connectivity among habitats and can facilitate rapid declines in riverine biota, especially fish. Indonesia is a tropical island country with an abundance of monsoonal rivers. Massive expansions in hydropower and irrigation infrastructure are planned over the next two decades and mitigation measures will be needed to protect migratory fish. Most Indonesian freshwater fish need to migrate among habitats to complete essential life-history stages. So, strategies are urgently needed to mitigate the barrier effects of river infrastructure to ensure the long-term sustainability of river fishes. A common tool used worldwide is the construction of upstream and downstream fish passes. Only two fish passes exist in Indonesia. One at Perjaya Irrigation Dam on the Komering River (Sumatra island) and another on Poso Dam on the Poso River (Sulawesi island). Neither of these structures has been assessed and many other projects are proceeding without considering potential impacts on fisheries. The proposed infrastructure upgrades over the next two decades provide a once-in-a-generation opportunity to ensure that migratory fish are adequately protected into the future.


1986 ◽  
Vol 64 (11) ◽  
pp. 2405-2411 ◽  
Author(s):  
Charles R. Blem ◽  
Michael H. Shelor

Midwinter lipid depots of the white-throated sparrow (Zonotrichia albicollis) at Richmond, Virginia, are correlated with a suite of environmental and morphological variables. Lipid reserves allow this species to survive even the most extreme winter conditions for several hours. Variables having the greatest individual correlations with lipid reserve are average temperature of the 20 days prior to capture, fat class, body weight, and long-term (32-year) average temperature of the date of capture. A comprehensive multiple regression model based on analyses of all possible independent variables accounts for 87% of the variation in lipid reserves. The most important independent variables in this model are body weight, mean temperature of the 20 days preceding collection, fat class, extreme high temperature of the day of capture, long-term average temperature, relative humidity, chill factor, wet-bulb temperatures of the day before and the day of capture, wing length, and precipitation. The "best" equation using only measurements of environment as independent variables included time of collection in hours after sunrise and hours before sunset, Eastern Standard Time, temperature of the 20 days prior to capture, and mean wind velocity of the day before capture. Models computed solely from temperature measurements included dry-bulb temperatures of the day of capture and the day before capture, low extreme temperatures of the day of capture, wet-bulb temperatures of the day before capture, and the 20-day average dry-bulb temperature of the period prior to collection. Fattening in response to weather conditions appears to be a form of "fine-tuning" of energy reserves superimposed on a more stable, intrinsic cycle of winter fattening.


2007 ◽  
Vol 44 (10) ◽  
pp. 1157-1180 ◽  
Author(s):  
L. Bonzanigo ◽  
E. Eberhardt ◽  
S. Loew

Slope movements of the deep-seated Campo Vallemaggia landslide in the southern Swiss Alps have been reported for over 200 years. Surface and borehole investigations of the unstable mass reveal an up to 300 m deep complex structure incorporating 800 million cubic metres of disturbed metamorphic rocks divided into blocks along primary fault zones. An average slide velocity of approximately 5 cm/year can be calculated from various monitoring data recorded between 1892 and 1995. Block movements primarily involve mechanisms relating to multiple shear surfaces, but in cases where slide blocks are constrained by other blocks, creep deformations are observed. Borehole investigations revealed the presence of artesian water pressures, which when integrated with inclinometer and surface geodetic data, helped to provide key insights into the underlying instability mechanisms. This paper reports the findings of an extensive mapping, geophysical, and monitoring investigation carried out over a 20 year period. Results from the analysis are presented with respect to the hydromechanical factors controlling the unstable mass, the significance of which were instrumental in resolving conflicts with regards to the slope mitigation measures required to stabilize the slope. In Part II (see companion paper, this issue), the stabilization works performed at Campo Vallemaggia and their effectiveness are presented.


Author(s):  
N.J.K. Howden ◽  
S.A. Mathias ◽  
M.J. Whelan ◽  
T.P. Burt ◽  
F. Worrall

Sign in / Sign up

Export Citation Format

Share Document