scholarly journals State tagging for improved earth and environmental data quality assurance

Author(s):  
Michael Tso ◽  
Peter Henrys ◽  
Susannah Rennie ◽  
John Watkins

<p>Long-term monitoring data that considers a wide array of environmental variables provides key insights to environmental change because responses of ecosystem functions and services to environmental drivers are inherently long-term and strongly interlinked. To ensure that the data are reliable for analysis and interpretation, they must undergo quality assurance procedures. However, the expected or acceptable range of data values vary greatly as the state of the ecosystem changes. Current quality assurance procedures for environmental data take no consideration of the system state at which each measurement is made, and provide the user with little contextual information on the probable cause for a measurement to be flagged out of range. We propose the use of data science techniques to tag each measurement with an identified system state. The term “state” here is defined loosely and they are identified using k-means clustering, an unsupervised machine learning method. The meaning of the states is open to specialist interpretation. Once the states are identified, state-dependent prediction intervals can be calculated for each observational variable. This approach provides the user with more contextual information to resolve out-of-range flags and derive prediction intervals for observational variables that considers the changes in system states. Our highly flexible and efficient approach is applicable to any point data time series in earth and environmental sciences, regardless of their sub-discipline. Such advantage is particularly relevant when conducting simultaneous analysis of multiple processes and feedbacks, where a wide variety of data is used.</p><p>We illustrate our approach using the moth and butterfly data from the UK Environmental Change Network (ECN), where meteorological variables are used to define system states. A web application is publicly available to allow users to explore the method on various ECN site, while a generic is also available for users to upload their own data files. Our work contributes to the ongoing development of a better data science framework that allows researchers and other stakeholders to find and use the data they need more readily and reliably.</p><p> </p>

Erdkunde ◽  
2021 ◽  
Author(s):  
Jörg Löffler ◽  
Svenja Dobbert ◽  
Roland Pape ◽  
Dirk Wundram

Here, we present fine-scale measurements of stem diameter variation from three common arctic-alpine dwarf-shrub species monitored in two mountain regions of Central Norway. All three species (Betula nana, Empetrum nigrum ssp. hermaphroditum, and Phyllodoce caerulea) are abundant within the studied regions and highly important contributors to potential future arctic-alpine vegetation shifts. A profound understanding of their radial growth patterns therefore has the potential to yield crucial information regarding climate-growth relations within these ecosystems. We used high-resolution dendrometers (type DRO) to monitor 120 specimens, taking measurements near the shoot base of one major horizontal stem. Along with the shrub growth measurements, we measured on-site micro-environmental data at each studied site, including shoot zone and root zone temperatures as well as soil moisture. All data were recorded at an hourly scale and are presented as daily mean values. The monitoring period spanned five full years (2015 - 2019), with additional data from 2014 and 2020. Data were collected within one of the most continental climate regions of Europe, the Vågå/Innlandet region, and in the oceanic climate region Geiranger/Møre og Romsdal, spanning a steep climate gradient over just ~100 km horizontal distance. Both study regions are characterized by steep elevational gradients and highly heterogeneous micro-topography. The studied sites were chosen to represent these natural conditions using the transect principle. The collection of our original data is subject of our long-term alpine ecosystem monitoring program since 1991, from which numerous publications function as the basis for a recent project on the use of dendrometer data in alpine ecosystem studies.


2019 ◽  
Vol 46 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Denis S Nogueira ◽  
Beatriz S Marimon ◽  
Ben Hur Marimon-Junior ◽  
Edmar A Oliveira ◽  
Paulo Morandi ◽  
...  

SummaryOver recent decades, biomass gains in remaining old-growth Amazonia forests have declined due to environmental change. Amazonia’s huge size and complexity makes understanding these changes, drivers, and consequences very challenging. Here, using a network of permanent monitoring plots at the Amazon–Cerrado transition, we quantify recent biomass carbon changes and explore their environmental drivers. Our study area covers 30 plots of upland and riparian forests sampled at least twice between 1996 and 2016 and subject to various levels of fire and drought. Using these plots, we aimed to: (1) estimate the long-term biomass change rate; (2) determine the extent to which forest changes are influenced by forest type; and (3) assess the threat to forests from ongoing environmental change. Overall, there was no net change in biomass, but there was clear variation among different forest types. Burning occurred at least once in 8 of the 12 riparian forests, while only 1 of the 18 upland forests burned, resulting in losses of carbon in burned riparian forests. Net biomass gains prevailed among other riparian and upland forests throughout Amazonia. Our results reveal an unanticipated vulnerability of riparian forests to fire, likely aggravated by drought, and threatening ecosystem conservation at the Amazon southern margins.


Paleobiology ◽  
10.1666/13019 ◽  
2014 ◽  
Vol 40 (3) ◽  
pp. 398-416 ◽  
Author(s):  
Christina L. Belanger ◽  
Marites Villarosa Garcia

Climate changes are multivariate in nature, and disentangling the proximal drivers of biotic responses to paleoclimate events requires time series of multiple environmental proxies. We reconstruct a multivariate time series of local environmental change for the early Miocene Newport Member of the Astoria Formation (20.26–18 Ma), using proxies for temperature (δ18O), productivity (δ13C), organic carbon flux (Δδ13C), oxygenation (δ15N), and sedimentary grain size (% mud). Our data suggest increases in productivity and declines in oxygenation on the Oregon shelf during this interval of global warming. We evaluate the association of individual environmental factors, and combinations of factors, with changes in faunal composition observed in benthic foraminiferal and molluscan communities collected from the exact same sediments as the environmental data. The δ15N values are the most parsimonious correlates with major changes in foraminiferal composition, whereas molluscan composition is most closely related to δ13C values, suggesting that different components of the environment are influencing each group. When the proxies that have the best supported relationships with the faunal gradients are removed from the analyses to simulate the absence of those proxy data, significant relationships between the faunal gradients and the remaining environmental proxies can still be found. This suggests that environmental drivers can be incorrectly attributed to faunal changes when key proxy data are missing. Paleoecological studies of biotic response that test multiple environmental drivers for multiple taxonomic groups are powerful tools for identifying the ecological consequences of past warming events and the regional drivers of ecological changes.


2021 ◽  
Author(s):  
Chak-Hau Michael Tso ◽  
Aaron Lowther ◽  
Don Monteith ◽  
Linsay Flynn Banin ◽  
William Simm ◽  
...  

<p>It is increasingly recognized that a whole-system approach is needed to address many challenging environmental research questions. While the whole-system approach is increasingly adopted by integrating data and models from various sub-systems, the ambition to apply this approach more widely across the environmental sciences requires infrastructure, methodologies, and a culture shift in order to facilitate seamless collaboration and re-deployment of workflows. </p><p>We report our recent progress in addressing some of these issues. We focus our examples here on work related to the UK Environmental Change Network (ECN, an eLTER member network). A transdisciplinary project team comprised of environmental scientists, statisticians, and computer scientists collaborated through the medium of a virtual research platform (DataLabs). Within the DataLabs platform, all data and analysis code are centrally stored via a cloud service and easily accessible via an internet browser from any operating system. Access to cloud computing resources for analyses are also available. More importantly, all users have access to the same versions of the data and software running on the same hardware throughout the collaboration process.</p><p>Such close collaboration allows us to co-develop statistical/data science algorithms that are suitable for a wide range of environmental data. These algorithms are not domain-specific and are generic enough to be used on any environmental datasets. Here we demonstrate how they are used to highlight periods of data with significant change. The first example is a "state tagging" algorithm, where each point in time of a dataset is classified as belonging to an arbitrary state based on clustering of covariates. Subsequently, confidence intervals, based on the statistics of each state, are computed and any data points that lie outside the confidence intervals are flagged for further investigation. A second example is the development of an algorithm for the identification of changepoints across multiple time series comprising different sampling frequencies or misaligned sampling times.  Existing multivariate changepoint algorithms assume that each time series is sampled at the same time (a situation not commonly applicable to environmental data). Our method removes this assumption, and emerged after consultation and collaboration with domain scientists. It has many potential applications, such as confirming whether changepoints occur across sites or across multiple variables within sites, or combinations thereof. In the final example, we show how DataLabs can facilitate the acquisition and application of third-party data to improve understanding of ECN atmospheric deposition chemistry data. Specifically, it allows users to take advantage of cloud computing and storage and collaborate seamlessly; where each collaborator is not required to have independent versions of software and data, saving time and effort. </p><p>The developments reported herein highlight the benefits of collaborative research using DataLabs to advance the integration of data, models, and methods across the environmental sciences. It provides the infrastructure, data, and culture to allow scientists to work more closely together. This in turn allows rapid incorporation of novel data science methods. It also allows the data integration workflows developed to be more readily applied elsewhere, while stakeholders can view and manipulate resultant data products.</p><p> </p>


2021 ◽  
Author(s):  
Martyn Futter ◽  
Syed Ashraful Alam ◽  
Roland Baatz ◽  
Jaana Bäck ◽  
Eugenio Diaz-Pines ◽  
...  

<p>Environmental thresholds. tipping points and subsequent regime shifts associated with the water/climate/greenhouse gas nexus pose a genuine threat to sustainability. Both the ongoing forest dieback in Central Europe caused by the extreme droughts of the last years and the effect of global warming on ecosystem functioning have the potential to cause ecological surprise (<em>sensu</em> Lindenmayer et al. 2010) where ecosystems are pushed into new, unexpected and usually undesirable states.</p><p>Formulating appropriate scientific and societal responses to such regime shifts requires breadth, depth, intensity and duration of environmental, ecological and socio-ecological monitoring. Broad geographic coverage to encompass relevant biophysical and societal gradients, consideration of all appropriate parameters, adequate measurement frequency and long-term, standardized observations are all needed to provide reliable early warnings of severe environmental change, test ecosystem models, avoid double counting in carbon accounting and to reduce the likelihood of undesirable ecological outcomes. This is especially true of events driven by simultaneous changes in climate, the water cycle and human activities.</p><p>Well-supported, site-based research infrastructures (RIs; e.g., eLTER and ICOS) are essential tools with the necessary breadth, depth, intensity and duration for early detection and attribution of environmental change. Individually, the eLTER and ICOS RIs generate a wealth of data supporting the ecosystem and carbon research communities. Achieving synergies between the two RIs can add value to both communities and potentially offer meaningful insight into the European water-climate-greenhouse gas nexus.</p><p>The unique insights into processes and mechanisms of ecosystem dynamics and functioning obtained from high intensity monitoring conducted by the ICOS RI greatly increase the likelihood of detecting signals of environmental change. These signals must be placed into the context of their long-term trajectory and potential societal and environmental drivers. The spatially extensive, long-term, multi-disciplinary monitoring conducted at LTER sites and LTSER platforms under the umbrella of the eLTER programme can provide this context.</p><p>Here, we outline one potential roadmap for achieving synergies between the ICOS and eLTER RIs focussing on the value of co-location for improved understanding of the water/climate/greenhouse gas nexus. Based on data and experiences from intensively studied research sites, we highlight some of the possibilities for reducing the likelihood of ecological surprise that could result from such synergies.</p><p>Lindenmayer, D.B., Likens, G.E., Krebs, C.J. and Hobbs, R.J., 2010. Improved probability of detection of ecological “surprises”. Proceedings of the National Academy of Sciences, 107(51), pp.21957-21962.</p>


2021 ◽  
Vol 544 ◽  
pp. 151609
Author(s):  
Luis Enrique Ángeles-González ◽  
Enrique Martínez-Meyer ◽  
Carlos Rosas ◽  
Paulina Valeria Guarneros-Narváez ◽  
Jorge A. López-Rocha ◽  
...  

1992 ◽  
Vol 338 (1285) ◽  
pp. 299-309 ◽  

Environmental change is the norm and it is likely that, particularly on the geological timescale, the temperature regime experienced by marine organisms has never been stable. These temperature changes vary in timescale from daily, through seasonal variations, to long-term environmental change over tens of millions of years. Whereas physiological work can give information on how individual organisms may react phenotypically to short-term change, the way benthic communities react to long-term change can only be studied from the fossil record. The present benthic marine fauna of the Southern Ocean is rich and diverse, consisting of a mixture of taxa with differing evolutionary histories and biogeographical affinities, suggesting that at no time in the Cenozoic did continental ice sheets extend sufficiently to eradicate all shallow-water faunas around Antarctica at the same time. Nevertheless, certain features do suggest the operation of vicariant processes, and climatic cycles affecting distributional ranges and ice-sheet extension may both have enhanced speciation processes. The overall cooling of southern high-latitude seas since the mid-Eocene has been neither smooth nor steady. Intermittent periods of global warming and the influence of Milankovitch cyclicity is likely to have led to regular pulses of migration in and out of Antarctica. The resultant diversity pump may explain in part the high species richness of some marine taxa in the Southern Ocean. It is difficult to suggest how the existing fauna will react to present global warming. Although it is certain the fauna will change, as all faunas have done throughout evolutionary time, we cannot predict with confidence how it will do so.


2011 ◽  
Vol 75 (3) ◽  
pp. 658-669 ◽  
Author(s):  
Yurena Yanes ◽  
Crayton J. Yapp ◽  
Miguel Ibáñez ◽  
María R. Alonso ◽  
Julio De-la-Nuez ◽  
...  

AbstractThe isotopic composition of land snail shells was analyzed to investigate environmental changes in the eastern Canary Islands (28–29°N) over the last ~ 50 ka. Shell δ13C values range from −8.9‰ to 3.8‰. At various times during the glacial interval (~ 15 to ~ 50 ka), moving average shell δ13C values were 3‰ higher than today, suggesting a larger proportion of C4 plants at those periods. Shell δ18O values range from −1.9‰ to 4.5‰, with moving average δ18O values exhibiting a noisy but long-term increase from 0.1‰ at ~ 50 ka to 1.6–1.8‰ during the LGM (~ 15–22 ka). Subsequently, the moving average δ18O values range from 0.0‰ at ~ 12 ka to 0.9‰ at present. Calculations using a published snail flux balance model for δ18O, constrained by regional temperatures and ocean δ18O values, suggest that relative humidity at the times of snail activity fluctuated but exhibited a long-term decline over the last ~ 50 ka, eventually resulting in the current semiarid conditions of the eastern Canary Islands (consistent with the aridification process in the nearby Sahara). Thus, low-latitude oceanic island land snail shells may be isotopic archives of glacial to interglacial and tropical/subtropical environmental change.


Polar Biology ◽  
2021 ◽  
Vol 44 (2) ◽  
pp. 237-257
Author(s):  
Rebecca Shaftel ◽  
Daniel J. Rinella ◽  
Eunbi Kwon ◽  
Stephen C. Brown ◽  
H. River Gates ◽  
...  

AbstractAverage annual temperatures in the Arctic increased by 2–3 °C during the second half of the twentieth century. Because shorebirds initiate northward migration to Arctic nesting sites based on cues at distant wintering grounds, climate-driven changes in the phenology of Arctic invertebrates may lead to a mismatch between the nutritional demands of shorebirds and the invertebrate prey essential for egg formation and subsequent chick survival. To explore the environmental drivers affecting invertebrate availability, we modeled the biomass of invertebrates captured in modified Malaise-pitfall traps over three summers at eight Arctic Shorebird Demographics Network sites as a function of accumulated degree-days and other weather variables. To assess climate-driven changes in invertebrate phenology, we used data from the nearest long-term weather stations to hindcast invertebrate availability over 63 summers, 1950–2012. Our results confirmed the importance of both accumulated and daily temperatures as predictors of invertebrate availability while also showing that wind speed negatively affected invertebrate availability at the majority of sites. Additionally, our results suggest that seasonal prey availability for Arctic shorebirds is occurring earlier and that the potential for trophic mismatch is greatest at the northernmost sites, where hindcast invertebrate phenology advanced by approximately 1–2.5 days per decade. Phenological mismatch could have long-term population-level effects on shorebird species that are unable to adjust their breeding schedules to the increasingly earlier invertebrate phenologies.


2019 ◽  
Vol 34 (3) ◽  
pp. 206-214
Author(s):  
Edward L. Schneider ◽  
Jung Ki Kim ◽  
Diana Hyun ◽  
Anjali Lobana ◽  
Rick Smith ◽  
...  

AIM: The most frequent use of medications in the geriatric population occurs in skilled nursing facilities. This quality assurance study prospectively examines the high number of prescriptions ordered for long-term nursing facility residents throughout their first year after admission. METHODS: The investigators prospectively followed 101 consecutive long-term-stay older adult residents at the Joyce Eisenberg Keefer Medical Center, a nursing facility of Los Angeles Jewish Home for the Aging (LAJH) over a 12-month period. Preadmission prescriptions were obtained for 91 residents, as well as prescriptions at 1 week, 1 month, 3 months, 6 months, and 1 year after admission. The number of prescriptions by staff physicians and outside physicians was examined. RESULTS: Over the 12 months following admission, the mean number of scheduled prescriptions increased significantly from 11.1 prior to admission to 13.0 by 6 months and to 13.3 by 12 months (P-value < 0.05). The residents who were hospitalized during the 12 months of observation received significantly more scheduled, as needed, and total prescriptions than those not hospitalized. Physicians employed full time by LAJH ordered significantly fewer additional prescriptions than physicians with outside practices. The patients of the staff physicians also had fewer hospitalizations than those of the outside physicians. CONCLUSION: This quality assurance study reveals a statistically significant increase in the number of prescriptions made in a long-term care setting over a 12-month prospective study. Patients of staff physicians received fewer prescriptions and were hospitalized less frequently than patients of physicians who practiced outside LAJH.


Sign in / Sign up

Export Citation Format

Share Document