Role of horizontal eddy diffusivity within the canopy on fire spread

Author(s):  
Yana Bebieva ◽  
Kevin Speer

<p>Wind profile observations are used to estimate turbulent properties in the atmospheric boundary layer from 1 m up to 300 m height above north Florida pine woods. Basic turbulence characteristics of the lower boundary layer are presented. Together with theoretical models for the mean horizontal velocity we derive the lateral diffusivity using Taylor's frozen turbulence hypothesis in the surface fuel layer (tens of centimeters). This parameter is used to predict the spread of surface fires in a simple 1D model. Initial assessments of sensitivity of the fire spread rates to the lateral diffusivity are made. Estimated lateral diffusivity with and without fire are made and associated fire spread rates are explored. Our results support the conceptual framework that eddy dynamics in the fuel layer is set by larger eddies developed in the canopy layer aloft. The presence of fire modifies the eddy structure depending on the fire intensity.</p>

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 672
Author(s):  
Yana Bebieva ◽  
Julia Oliveto ◽  
Bryan Quaife ◽  
Nicholas S. Skowronski ◽  
Warren E. Heilman ◽  
...  

Wind profile observations are used to estimate turbulent mixing in the atmospheric boundary layer from 1 m up to 300 m height in two locations of pine forests characteristic of the southeast US region, and to 30 m height at one location in the northeast. Basic turbulence characteristics of the boundary layers above and within the canopy were measured near prescribed fires for time periods spanning the burns. Together with theoretical models for the mean horizontal velocity and empirical relations between mean flow and variance, we derive the lateral diffusivity using Taylor’s frozen turbulence hypothesis in the thin surface-fuel layer. This parameter is used in a simple 1D model to predict the spread of surface fires in different wind conditions. Initial assessments of sensitivity of the fire spread rates to the lateral diffusivity are made. The lateral diffusivity with and without fire-induced wind is estimated and associated fire spread rates are explored. Our results support the conceptual framework that eddy dynamics in the fuel layer is set by larger eddies developed in the canopy layer aloft. The presence of fire modifies the wind, hence spread rate, depending on the fire intensity.


2019 ◽  
Vol 56 (4) ◽  
pp. 533-547
Author(s):  
Shaojun Lai ◽  
Haishan Chen ◽  
Fen He ◽  
Weijie Wu

AbstractIn this paper, it is discussed the performance of the Weather Research and Forecasting (WRF) model coupled with a wildland fire-behavior module (WRF-Fire model) by the observational data collected in an experiment with a low-intensity prescribed fire (LIPF) conducted in the New Jersey Pine Barrens (NJPB) on March 6, 2012. The sensitivity experiments of the WRF-Fire model are carried out to investigate the interactions between the wildland fire and the atmospheric planetary boundary layer. The two-way WRF-Fire model conofigured with fire and large eddy simulation (LES) mode is used to explore the fire characteristics of perimeter shape, intensity, spread direction and external factors of wind speed, and to discuss how these external parameters affect the fire, and the interactions between the atmosphere and fire. Results show that the sensitive experiments can provide the meteorological elements close to observations, such as the temperatures, winds and turbulent kinetic energy near the surface in the vicinity of the fire. The simulations also can reproduce the fire spread shape and speed, fire intensity, and heat flux released from fire. From the view of energy, the heat flux feed back to the atmospheric model and heat the air near the surface, which will induce strong thermal and dynamic instability causing strong horizontal convergence and updraft, and form the fire-induced convective boundary layer. The updraft will be tilted downstream of the fire area based on the height of the ambient winds. Due to the effect of the this updrafts, the particles and heat from the fuel combustion can be transported to the downwind and lateral regions of the fire area. Meanwhile, there is a downdraft flow with higher momentum nearby the fire line transporting fresh oxygen to the near surface, which will increase winds behind the fire line, accelerate the rate of spread (ROS) and make the fire spread to a larger area. Ultimately, a fire-induced climate is established.


2011 ◽  
Vol 68 (7) ◽  
pp. 1526-1540 ◽  
Author(s):  
Marcin L. Witek ◽  
Joao Teixeira ◽  
Georgios Matheou

Abstract This study presents a new approach to the eddy diffusivity/mass flux (EDMF) framework for the modeling of convective boundary layers. At the root of EDMF lies a decomposition of turbulent transport mechanisms into strong ascending updrafts and smaller-scale turbulent motions. The turbulent fluxes can be therefore described using two conventional approaches: mass flux (MF) for the organized thermals and eddy diffusivity (ED) for the remaining turbulent field. Since the intensities of both MF and ED transports depend on the kinetic energy of the turbulent motions, it seems reasonable to formulate an EDMF framework based on turbulent kinetic energy (TKE). Such an approach allows for more physical and less arbitrary formulations of parameters in the model. In this study the EDMF–TKE coupling is achieved through the use of (i) a new parameterization for the lateral entrainment coefficient ɛ and (ii) the MF contribution to the buoyancy source of TKE. Some other important features of the EDMF parameterization presented here include a revised mixing length formulation and Monin–Obukhov stability scaling for the surface layer. The scheme is implemented in a one-dimensional (1D) model. Several cases of dry convective boundary layers (CBL) with different surface sensible heat fluxes in the free-convection limit are investigated. Results are compared to large-eddy simulation (LES). Good agreement between LES and the 1D model is achieved with respect to mean profiles, boundary layer evolution, and updraft characteristics. Some disagreements between the models are found to most likely relate to deficiencies in the TKE simulation in the 1D model. Comparison with other previously established ɛ parameterizations shows that the new TKE-based formulation leads to equally accurate, and in many respects better, simulation of the CBL. The encouraging results obtained with the proposed EDMF framework indicate that full integration of EDMF with higher-order closures is possible and can further improve boundary layer simulations.


1986 ◽  
Vol 64 (6) ◽  
pp. 1295-1309 ◽  
Author(s):  
M. M. Chance ◽  
D. A. Craig

Detailed water flow around larvae of Simulium vittatum Zett. (sibling IS-7) was investigated using flow tanks, aluminium flakes, pigment, still photography, cinematography, and video recordings. Angle of deflection of a larva from the vertical has a hyperbolic relationship to water velocity. Velocity profiles around larvae show that the body is in the boundary layer. Frontal area of the body decreases as velocity increases. Disturbed larvae exhibit "avoidance reaction" and pull the body into the lower boundary layer. Longitudinal twisting and yawing of the larval body places one labral fan closer to the substrate, the other near the top of the boundary layer. Models and live larvae were used to demonstrate the basic hydrodynamic phenomenon of downstream paired vortices. Body shape and feeding stance result in one of the vortices remaining in the lower boundary layer. The other rises up the downstream side of the body, passes through the lower fan, then forms a von Karman trail of detaching vortices. This vortex entrains particulate matter from the substrate, which larvae then filter. Discharge of water into this upper vortex remains constant at various velocities and only water between the substrate and top of the posterior abdomen is incorporated into it. The upper fan filters water only from the top of the boundary layer. Formation of vortices probably influences larval microdistribution and filter feeding. Larvae positioned side by side across the flow mutually influence flow between them, thus enhancing feeding. Larvae downstream of one another may use information from the von Karman trail of vortices to position themselves advantageously.


2018 ◽  
Vol 18 (1) ◽  
pp. 3-48
Author(s):  
LMBC Campos ◽  
C Legendre

In this study, the propagation of waves in a two-dimensional parallel-sided nozzle is considered allowing for the combination of: (a) distinct impedances of the upper and lower walls; (b) upper and lower boundary layers with different thicknesses with linear shear velocity profiles matched to a uniform core flow; and (c) a uniform cross-flow as a bias flow out of one and into the other porous acoustic liner. The model involves an “acoustic triple deck” consisting of third-order non-sinusoidal non-plane acoustic-shear waves in the upper and lower boundary layers coupled to convected plane sinusoidal acoustic waves in the uniform core flow. The acoustic modes are determined from a dispersion relation corresponding to the vanishing of an 8 × 8 matrix determinant, and the waveforms are combinations of two acoustic and two sets of three acoustic-shear waves. The eigenvalues are calculated and the waveforms are plotted for a wide range of values of the four parameters of the problem, namely: (i/ii) the core and bias flow Mach numbers; (iii) the impedances at the two walls; and (iv) the thicknesses of the two boundary layers relative to each other and the core flow. It is shown that all three main physical phenomena considered in this model can have a significant effect on the wave field: (c) a bias or cross-flow even with small Mach number [Formula: see text] relative to the mean flow Mach number [Formula: see text] can modify the waveforms; (b) the possibly dissimilar impedances of the lined walls can absorb (or amplify) waves more or less depending on the reactance and inductance; (a) the exchange of the wave energy with the shear flow is also important, since for the same stream velocity, a thin boundary layer has higher vorticity, and lower vorticity corresponds to a thicker boundary layer. The combination of all these three effects (a–c) leads to a large set of different waveforms in the duct that are plotted for a wide range of the parameters (i–iv) of the problem.


2010 ◽  
Vol 10 (16) ◽  
pp. 7709-7722 ◽  
Author(s):  
G.-J. Roelofs ◽  
H. ten Brink ◽  
A. Kiendler-Scharr ◽  
G. de Leeuw ◽  
A. Mensah ◽  
...  

Abstract. In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT) for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately −30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL) dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.


FLORESTA ◽  
2013 ◽  
Vol 43 (4) ◽  
pp. 557
Author(s):  
Celso Darci Seger ◽  
Antonio Carlos Batista ◽  
Alexandre França Tetto ◽  
Ronaldo Viana Soares

As queimas controladas constituem práticas de manejo utilizadas em diferentes tipos de vegetação e difundidas em vários países. No entanto, para a realização de tais práticas com segurança e eficiência é fundamental o conhecimento do comportamento do fogo. O objetivo desse trabalho foi caracterizar o comportamento do fogo em queimas controladas de vegetação Estepe Gramíneo-Lenhosa no estado do Paraná. Para isso, foi instalado um experimento no município de Palmeira, onde 20 parcelas foram queimadas, sendo metade a favor e metade contra o vento. A carga de material combustível fino estimada foi de 2,26 kg.m-2, com teor médio de umidade de 50,45%. A quantidade de material consumido pela queima foi de 1,76 kg.m-2, com uma eficiência média de queima de 76,86%. As médias obtidas, a favor e contra o vento, foram respectivamente: velocidade de propagação do fogo de 0,049 e 0,012 m.s-1, altura das chamas de 1,34 e 0,843 m, intensidade do fogo de 210,53 e 50,68 kcal.m-1.s-1 e calor liberado de 4.067,19 e 4.508,92 kcal.m-2. Os resultados permitiram concluir que as queimas controladas em vegetação de campos naturais, realizadas dentro dos critérios estabelecidos de planos de queima, são viáveis e seguras sob o ponto de vista de perigo de incêndios.Palavras chave: Queima prescrita; material combustível; intensidade do fogo; perigo de incêndios. AbstractFire behavior of prescribed burns in grassland on Palmeira county, Paraná, Brazil. The prescribed burns are practices of management used in different types of vegetation and widespread in several countries. However, to carry out such practices safely and effectively is fundamental knowledge of fire behavior. The aim of this study was to characterize the fire behavior in controlled burning of grassland vegetation in Paraná state. For this, an experiment was conducted in Palmeira County, where 20 plots were burned, half in favor and half against the wind. The estimated fine fuel loading was 2.26 kg.m-2, with average moisture content of 50.45%. The fuel consumption by burning was 1.76 kg.m-2 with an average efficiency of burning of 76.86%. The averages, for and against the wind, were: speed of fire spread of 0.049 and 0.012 m.s-1, the flame height of 1.34 m and 0.843, fire intensity of 210.53 and 50.68 kcal.m-1.s-1 and heat released from 4,067.19 and 4,508.92 kcal.m-2. The results show that the controlled burnings of grasslands vegetation, carried out within the established criteria burning plans are feasible and safe from the aspect of fire danger.Keywords: Prescribed burns; fuel loading; fire intensity; fire risk.


2016 ◽  
Vol 9 ◽  
pp. ASWR.S39940 ◽  
Author(s):  
Yun Hee Park ◽  
Irina N. Sokolik

Fire emissions are a significant mechanism in the carbon cycling from the Earth's surface to the atmosphere, and fire behavior is considerably interacted with weather and climate. However, due to interannual variation of the emissions and nonlinear smoke plume dynamics, understanding the interactions between fire behavior and the atmosphere is challenging. This study aims to establish a climatology of the fire emission in Central Asia and has estimated a feedback of fire emissions to meteorological variables on a seasonal basis using the Weather Research and Forecasting model coupled with Chemistry. The months of April, May, and September have a relatively large number of pixels, where the plume height is located within the boundary layer, and the domain during these months tends to have unstable conditions at the strongest smoke, showing a lower percentage of stable conditions. From the seasonal analysis, the high fire intensity occurs in the summer as smoke travels above the boundary layer, changing temperature profile and increasing the water vapor mixing ratio.


2007 ◽  
Vol 571 ◽  
pp. 149-175 ◽  
Author(s):  
ALAN SHAPIRO ◽  
EVGENI FEDOROVICH

Buoyancy inhomogeneities on sloping surfaces arise in numerous situations, for example, from variations in snow/ice cover, cloud cover, topographic shading, soil moisture, vegetation type, and land use. In this paper, the classical Prandtl model for one-dimensional flow of a viscous stably stratified fluid along a uniformly cooled sloping planar surface is extended to include the simplest type of surface inhomogeneity – a surface buoyancy that varies linearly down the slope. The inhomogeneity gives rise to acceleration, vertical motions associated with low-level convergence, and horizontal and vertical advection of perturbation buoyancy. Such processes are not accounted for in the classical Prandtl model. A similarity hypothesis appropriate for this inhomogeneous flow removes the along-slope dependence from the problem, and, in the steady state, reduces the Boussinesq equations of motion and thermodynamic energy to a set of coupled nonlinear ordinary differential equations. Asymptotic solutions for the velocity and buoyancy variables in the steady state, valid for large values of the slope-normal coordinate, are obtained for a Prandtl number of unity for pure katabatic flow with no ambient wind or externally imposed pressure gradient. The undetermined parameters in these solutions are adjusted to conform to lower boundary conditions of no-slip, impermeability and specified buoyancy. These solutions yield formulae for the boundary-layer thickness and slope-normal velocity component at the top of the boundary layer, and provide an upper bound of the along-slope surface-buoyancy gradient beyond which steady-state solutions do not exist. Although strictly valid for flow above the boundary layer, the steady asymptotic solutions are found to be in very good agreement with the terminal state of the numerical solution of an initial-value problem (suddenly applied surface buoyancy) throughout the flow domain. The numerical results also show that solution non-existence is associated with self-excitation of growing low-frequency gravity waves.


2017 ◽  
Vol 74 (6) ◽  
pp. 1879-1905 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu

Abstract As a result of rapid changes in surface conditions when a landfalling hurricane moves from ocean to land, interactions between the hurricane and surface heat and moisture fluxes become essential components of its evolution and dissipation. With a research version of the Hurricane Weather Research and Forecasting Model (HWRF), this study examines the effects of the vertical eddy diffusivity in the boundary layer on the evolution of three landfalling hurricanes (Dennis, Katrina, and Rita in 2005). Specifically, the parameterization scheme of eddy diffusivity for momentum Km is adjusted with the modification of the mixed-layer velocity scale in HWRF for both stable and unstable conditions. Results show that the change in the Km parameter leads to improved simulations of hurricane track, intensity, and quantitative precipitation against observations during and after landfall, compared to the simulations with the original Km. Further diagnosis shows that, compared to original Km, the modified Km produces stronger vertical mixing in the hurricane boundary layer over land, which tends to stabilize the hurricane boundary layer. Consequently, the simulated landfalling hurricanes attenuate effectively with the modified Km, while they mostly inherit their characteristics over the ocean and decay inefficiently with the original Km.


Sign in / Sign up

Export Citation Format

Share Document