scholarly journals Toward Developing a Climatology of Fire Emissions in Central Asia

2016 ◽  
Vol 9 ◽  
pp. ASWR.S39940 ◽  
Author(s):  
Yun Hee Park ◽  
Irina N. Sokolik

Fire emissions are a significant mechanism in the carbon cycling from the Earth's surface to the atmosphere, and fire behavior is considerably interacted with weather and climate. However, due to interannual variation of the emissions and nonlinear smoke plume dynamics, understanding the interactions between fire behavior and the atmosphere is challenging. This study aims to establish a climatology of the fire emission in Central Asia and has estimated a feedback of fire emissions to meteorological variables on a seasonal basis using the Weather Research and Forecasting model coupled with Chemistry. The months of April, May, and September have a relatively large number of pixels, where the plume height is located within the boundary layer, and the domain during these months tends to have unstable conditions at the strongest smoke, showing a lower percentage of stable conditions. From the seasonal analysis, the high fire intensity occurs in the summer as smoke travels above the boundary layer, changing temperature profile and increasing the water vapor mixing ratio.

1986 ◽  
Vol 16 (6) ◽  
pp. 1293-1300 ◽  
Author(s):  
Ralph M. Nelson Jr. ◽  
Carl W. Adkins

Twenty-two fires in a laboratory wind tunnel and 8 field fires were studied with video techniques to determine relationships between their flame characteristics and fire behavior. The laboratory fires were in pine needle fuel beds with and without an overlying stratum of live vegetation. These fuels simulated 2-year roughs in southeastern fuel types. The field bums were in 1- and 2-year roughs in similar fuels. Byram's fire intensity ranged from 98 to 590 kW/m in the laboratory, and from 355 to 2755 kW/m in the field. Flame lengths were proportional to the square root of fire intensity when fuel consumption exceeded 0.5 kg/m2, in agreement with predictions from buoyant flame theory. However, for burns in the needle layer (consumption approximately 0.5 kg/m2), flame lengths were constant at about 0.5 m, regardless of intensity. Similar values were observed on two of the field fires. It is speculated that flame length is limited by a boundary layer pattern for the overall flow, even though the flames themselves did not exhibit boundary layer characteristics. Also, laboratory correlations of flame tilt angle and fire intensity with other fire and weather variables depart from buoyant flame theory. Further study under field conditions is needed before relationships involving flame tilt angle, fire intensity, and wind speed should be used in practical applications.


2013 ◽  
Vol 52 (1) ◽  
pp. 16-38 ◽  
Author(s):  
Janice L. Coen ◽  
Marques Cameron ◽  
John Michalakes ◽  
Edward G. Patton ◽  
Philip J. Riggan ◽  
...  

AbstractA wildland fire-behavior module, named WRF-Fire, was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire-behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and are used, with fuel properties and local terrain gradients, to determine the fire’s spread rate and direction. Fuel consumption releases sensible and latent heat fluxes into the atmospheric model’s lowest layers, driving boundary layer circulations. The atmospheric model, configured in turbulence-resolving large-eddy-simulation mode, was used to explore the sensitivity of simulated fire characteristics such as perimeter shape, fire intensity, and spread rate to external factors known to influence fires, such as fuel characteristics and wind speed, and to explain how these external parameters affect the overall fire properties. Through the use of theoretical environmental vertical profiles, a suite of experiments using conditions typical of the daytime convective boundary layer was conducted in which these external parameters were varied around a control experiment. Results showed that simulated fires evolved into the expected bowed shape because of fire–atmosphere feedbacks that control airflow in and near fires. The coupled model reproduced expected differences in fire shapes and heading-region fire intensity among grass, shrub, and forest-litter fuel types; reproduced the expected narrow, rapid spread in higher wind speeds; and reproduced the moderate inhibition of fire spread in higher fuel moistures. The effects of fuel load were more complex: higher fuel loads increased the heat flux and fire-plume strength and thus the inferred fire effects but had limited impact on spread rate.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 401
Author(s):  
Jonathan Biehl ◽  
Bastian Paas ◽  
Otto Klemm

City centers have to cope with an increasing amount of air pollution. The supply of fresh air is crucial yet difficult to ensure, especially under stable conditions of the atmospheric boundary layer. This case study used the PArallelized Large eddy simulation (LES) Model PALM to investigate the wind field over an urban lake that had once been built as a designated fresh air corridor for the city center of Münster, northwest, Germany. The model initialization was performed using the main wind direction and stable boundary layer conditions as input. The initial wind and temperature profiles included a weak nocturnal low-level jet. By emitting a passive scalar at one point on top of a bridge, the dispersion of fresh air could be traced over the lake’s surface, within street canyons leading to the city center and within the urban boundary layer above. The concept of city ventilation was confirmed in principle, but the air took a direct route from the shore of the lake to the city center above a former river bed and its adjoining streets rather than through the street canyons. According to the dispersion of the passive scalar, half of the city center was supplied with fresh air originating from the lake. PALM proved to be a useful tool to study fresh air corridors under stable boundary layer conditions.


2019 ◽  
Vol 77 (3) ◽  
pp. 1081-1100 ◽  
Author(s):  
Neil P. Lareau

Abstract Doppler and Raman lidar observations of vertical velocity and water vapor mixing ratio are used to probe the physics and statistics of subcloud and cloud-base latent heat fluxes during cumulus convection at the ARM Southern Great Plains (SGP) site in Oklahoma, United States. The statistical results show that latent heat fluxes increase with height from the surface up to ~0.8Zi (where Zi is the convective boundary layer depth) and then decrease to ~0 at Zi. Peak fluxes aloft exceeding 500 W m−2 are associated with periods of increased cumulus cloud cover and stronger jumps in the mean humidity profile. These entrainment fluxes are much larger than the surface fluxes, indicating substantial drying over the 0–0.8Zi layer accompanied by moistening aloft as the CBL deepens over the diurnal cycle. We also show that the boundary layer humidity budget is approximately closed by computing the flux divergence across the 0–0.8Zi layer. Composite subcloud velocity and water vapor anomalies show that clouds are linked to coherent updraft and moisture plumes. The moisture anomaly is Gaussian, most pronounced above 0.8Zi and systematically wider than the velocity anomaly, which has a narrow central updraft flanked by downdrafts. This size and shape disparity results in downdrafts characterized by a high water vapor mixing ratio and thus a broad joint probability density function (JPDF) of velocity and mixing ratio in the upper CBL. We also show that cloud-base latent heat fluxes can be both positive and negative and that the instantaneous positive fluxes can be very large (~10 000 W m−2). However, since cloud fraction tends to be small, the net impact of these fluxes remains modest.


FLORESTA ◽  
2013 ◽  
Vol 43 (4) ◽  
pp. 557
Author(s):  
Celso Darci Seger ◽  
Antonio Carlos Batista ◽  
Alexandre França Tetto ◽  
Ronaldo Viana Soares

As queimas controladas constituem práticas de manejo utilizadas em diferentes tipos de vegetação e difundidas em vários países. No entanto, para a realização de tais práticas com segurança e eficiência é fundamental o conhecimento do comportamento do fogo. O objetivo desse trabalho foi caracterizar o comportamento do fogo em queimas controladas de vegetação Estepe Gramíneo-Lenhosa no estado do Paraná. Para isso, foi instalado um experimento no município de Palmeira, onde 20 parcelas foram queimadas, sendo metade a favor e metade contra o vento. A carga de material combustível fino estimada foi de 2,26 kg.m-2, com teor médio de umidade de 50,45%. A quantidade de material consumido pela queima foi de 1,76 kg.m-2, com uma eficiência média de queima de 76,86%. As médias obtidas, a favor e contra o vento, foram respectivamente: velocidade de propagação do fogo de 0,049 e 0,012 m.s-1, altura das chamas de 1,34 e 0,843 m, intensidade do fogo de 210,53 e 50,68 kcal.m-1.s-1 e calor liberado de 4.067,19 e 4.508,92 kcal.m-2. Os resultados permitiram concluir que as queimas controladas em vegetação de campos naturais, realizadas dentro dos critérios estabelecidos de planos de queima, são viáveis e seguras sob o ponto de vista de perigo de incêndios.Palavras chave: Queima prescrita; material combustível; intensidade do fogo; perigo de incêndios. AbstractFire behavior of prescribed burns in grassland on Palmeira county, Paraná, Brazil. The prescribed burns are practices of management used in different types of vegetation and widespread in several countries. However, to carry out such practices safely and effectively is fundamental knowledge of fire behavior. The aim of this study was to characterize the fire behavior in controlled burning of grassland vegetation in Paraná state. For this, an experiment was conducted in Palmeira County, where 20 plots were burned, half in favor and half against the wind. The estimated fine fuel loading was 2.26 kg.m-2, with average moisture content of 50.45%. The fuel consumption by burning was 1.76 kg.m-2 with an average efficiency of burning of 76.86%. The averages, for and against the wind, were: speed of fire spread of 0.049 and 0.012 m.s-1, the flame height of 1.34 m and 0.843, fire intensity of 210.53 and 50.68 kcal.m-1.s-1 and heat released from 4,067.19 and 4,508.92 kcal.m-2. The results show that the controlled burnings of grasslands vegetation, carried out within the established criteria burning plans are feasible and safe from the aspect of fire danger.Keywords: Prescribed burns; fuel loading; fire intensity; fire risk.


2020 ◽  
Vol 237 ◽  
pp. 03012
Author(s):  
Christoph Senff ◽  
Andrew Langford ◽  
Raul Alvarez ◽  
Tim Bonin ◽  
Alan Brewer ◽  
...  

Recently, two air quality campaigns were conducted in the southwestern United States to study the impact of transported ozone, stratospheric intrusions, and fire emissions on ground-level ozone concentrations. The California Baseline Ozone Transport Study (CABOTS) took place in May – August 2016 covering the central California coast and San Joaquin Valley, and the Fires, Asian, and Stratospheric Transport Las Vegas Ozone Study (FAST-LVOS) was conducted in the greater Las Vegas, Nevada area in May – June 2017. During these studies, nearly 1000 hours of ozone and aerosol profile data were collected with the NOAA TOPAZ lidar. A Doppler wind lidar and a radar wind profiler provided continuous observations of atmospheric turbulence, horizontal winds, and mixed layer height. These measurements allowed us to directly observe the degree to which ozone transport layers aloft were entrained into the boundary layer and to quantify the resulting impact on surface ozone levels. Mixed layer heights in the San Joaquin Valley during CABOTS were generally below 1 km above ground level (AGL), while boundary layer heights in Las Vegas during FAST-LVOS routinely exceeded 3 km AGL and occasionally reached up to 4.5 km AGL. Consequently, boundary layer entrainment was more often observed during FAST-LVOS, while most elevated ozone layers passed untapped over the San Joaquin Valley during CABOTS.


2018 ◽  
Vol 99 (6) ◽  
pp. 1177-1195 ◽  
Author(s):  
Nicholas McCarthy ◽  
Hamish McGowan ◽  
Adrien Guyot ◽  
Andrew Dowdy

AbstractThe process of pyroconvection occurs when fire-released heat, moisture, and/or aerosols induce or augment convection in the atmosphere. Prediction of pyroconvection presents a set of complex problems for meteorologists and wildfire managers. In particular, the turbulent characteristics of a pyroconvective plume exert bidirectional feedback on fire behavior, often with resulting severe impacts on life and property. Here, we present the motivation, field strategy, and initial results from the Bushfire Convective Plume Experiment, which through the use of mobile radar aims to quantify the kinematics of pyroconvection and its role in fire behavior. The case studies presented include world-first observations from two wildfires and one prescribed burn using the University of Queensland’s portable, dual-polarized X-band Doppler radar (UQ-XPOL). The initial analyses of reflectivity, Doppler winds, polarimetric variables, and spectrum width data provide insights into these relatively unexplored datasets within the context of pyroconvection. Weather radar data are supported by mesonet observations, time-lapse photography, airborne multispectral imaging, and spot-fire mapping. The ability to combine ground-validated fire intensity and progression at an hourly scale with quantitative data documenting the evolution of the convective plume kinematics at the scale of hundreds of meters represents a new capability for advancing our understanding of wildfires. The results demonstrate the suitability of portable, dual-polarized X-band Doppler radar to investigate pyroconvection and associated plume dynamics.


2019 ◽  
Author(s):  
Martin Kunz ◽  
Jost V. Lavric ◽  
Rainer Gasche ◽  
Christoph Gerbig ◽  
Richard H. Grant ◽  
...  

Abstract. The carbon exchange between ecosystems and the atmosphere has a large influence on the Earth system and specifically on the climate. This exchange is therefore being studied intensively, often using the eddy covariance (EC) technique. EC measurements provide reliable results under turbulent atmospheric conditions, but under stable conditions – as they often occur at night – these measurements are known to misrepresent exchange fluxes. Nocturnal boundary layer (NBL) budgets can provide independent flux estimates under stable conditions, but their application so far has been limited by rather high cost and practical difficulties. Unmanned aircraft systems (UASs) equipped with trace gas analysers have the potential to make this method more accessible. We present the methodology and results of a proof of concept study carried out during the ScaleX 2016 campaign. Successive vertical profiles of carbon dioxide dry air mole fraction in the NBL were taken with a compact analyser carried by a UAS. We estimate an average carbon dioxide flux of 12 μmol m−2 s−1, which is plausible for nocturnal respiration in this region in summer. Transport modelling suggests that the NBL budgets represent an area on the order of 100 km2.


2007 ◽  
Vol 135 (10) ◽  
pp. 3474-3483 ◽  
Author(s):  
Kyung-Ja Ha ◽  
Yu-Kyung Hyun ◽  
Hyun-Mi Oh ◽  
Kyung-Eak Kim ◽  
Larry Mahrt

Abstract The Monin–Obukhov similarity theory and a generalized formulation of the mixing length for the stable boundary layer are evaluated using the Cooperative Atmosphere–Surface Exchange Study-1999 (CASES-99) data. The large-scale wind forcing is classified into weak, intermediate, and strong winds. Although the stability parameter, z/L, is inversely dependent on the mean wind speed, the speed of the large-scale flow includes independent influences on the flux–gradient relationship. The dimensionless mean wind shear is found to obey existing stability functions when z/L is less than unity, particularly for the strong and intermediate wind classes. For weak mean winds and/or strong stability (z/L > 1), this similarity theory breaks down. Deviations from similarity theory are examined in terms of intermittency. A case study of a weak-wind night indicates important modulation of the turbulence flux by mesoscale motions of unknown origin.


Sign in / Sign up

Export Citation Format

Share Document