Recent observations of magnetic cavities: from MHD to kinetic scale

Author(s):  
Quanqi Shi ◽  
Et al

<p>Magnetic cavities, also termed magnetic holes, dips or depression structures, have an observable magnetic field decrease in a short time span and have been widely observed in the solar wind plasmas, comet magnetospheres, terrestrial/planetary magnetosheaths, magnetospheric cusps and magnetotail plasmas since 1970s. In early observations, the structures were found in MHD scale, from tens to thousands of ρi (proton gyroradius) with corresponding temporal scales from seconds to tens of minutes. Later, kinetic scale magnetic cavities were detected in the earth’s magnetotail and magnetosheath, with size less than ρi and sometimes close to several ρe (electron gyroradius) and often associated with a significant electron vortex around the structure. Surprisingly, it has been found that such a small structure contains an abundance of phenomena, including different kinds of ion and electron distributions, electron or ion vortices, various types of waves, and even particle acceleration and declarations. In this presentation, we will show our recent observations of magnetic cavities from MHD scale to kinetic scale in the solar wind, magnetosheath, cusp and magnetotail. In the magnetosheath, downstream of the bow shock, the mirror mode instability can generate magnetic dip and peak trains. Using data from the new NASA satellite constellation MMS, we have found that electrons exhibit a new ‘donut’ shaped distribution function related to particle deceleration processes. Using boundary normal and velocity determination techniques, we found that MHD scale magnetic cavity structures can expand or shrink, and they can enter the cusp regions along with the entry plasmas. In the turbulent magnetosheath and quiet magnetotail, we have observed kinetic scale magnetic cavity structures with scales comparable or less than one ρi. An EMHD model and other theories will also be introduced and compared. We found that in the sheath the electron scale magnetic cavity has a circular cross section and it is a magnetic bottle in 3-D. We have also found that these structures shrink due to increases in the surrounding magnetic field, and this shrinkage of the small scale magnetic cavity can induce an electric field that accelerates the electrons to a significantly higher energy. Qualitatively distinct from other acceleration mechanisms, this process indicates a new type of non-adiabetic acceleration, and has been confirmed by the observed electron distribution function and test particle simulations. This discovery in space physics also has implications for understanding energy conversion in astrophysical plasmas, the origin of cosmic high-energy particles and plasma turbulence.</p>

2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


2021 ◽  
Vol 922 (2) ◽  
pp. 188
Author(s):  
L.-L. Zhao ◽  
G. P. Zank ◽  
J. S. He ◽  
D. Telloni ◽  
L. Adhikari ◽  
...  

Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identify the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing to the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere.


2004 ◽  
Vol 22 (10) ◽  
pp. 3751-3769 ◽  
Author(s):  
R. Bruno ◽  
V. Carbone ◽  
L. Primavera ◽  
F. Malara ◽  
L. Sorriso-Valvo ◽  
...  

Abstract. In spite of a large number of papers dedicated to the study of MHD turbulence in the solar wind there are still some simple questions which have never been sufficiently addressed, such as: a) Do we really know how the magnetic field vector orientation fluctuates in space? b) What are the statistics followed by the orientation of the vector itself? c) Do the statistics change as the wind expands into the interplanetary space? A better understanding of these points can help us to better characterize the nature of interplanetary fluctuations and can provide useful hints to investigators who try to numerically simulate MHD turbulence. This work follows a recent paper presented by some of the authors which shows that these fluctuations might resemble a sort of random walk governed by Truncated Lévy Flight statistics. However, the limited statistics used in that paper did not allow for final conclusions but only speculative hypotheses. In this work we aim to address the same problem using more robust statistics which, on the one hand, forces us not to consider velocity fluctuations but, on the other hand, allows us to establish the nature of the governing statistics of magnetic fluctuations with more confidence. In addition, we show how features similar to those found in the present statistical analysis for the fast speed streams of solar wind are qualitatively recovered in numerical simulations of the parametric instability. This might offer an alternative viewpoint for interpreting the questions raised above.


2020 ◽  
Author(s):  
Daniel Heyner ◽  
Ingo Richter ◽  
Ferdinand Plaschke ◽  
David Fischer ◽  
Johannes Mieth ◽  
...  

<p>BepiColombo is en-route to Mercury. The boom carrying the planetary magnetometers (MPO-MAG instrument) was deployed in space on 25th of October in 2018. After the deployment, the magnetic disturbances arising from the spacecraft have been greatly decreased. Since the deployment, the fluxgate sensors have been monitoring the magnetic field continuously except for the solar electric propulsion phase. Extensive calibration and data processing activities have since enabled us to greatly decrease spacecraft-generated <br>disturbances in the magnetic field observations; these activities constitute a key step towards making the data <br>suitable for scientific analysis. We present a few cases of identified magnetic disturbances, discuss the challenges <br>they pose, and compare methods to clean the data. We also compare MPO-MAG measurements to observations by the <br>Advanced Composition Explorer (ACE) solar wind monitor, thereby highlighting the small-scale nature and rapid <br>evolution of interplanetary magnetic field (IMF) variations. We conclude with an overview of the scientific <br>goals of the instrument team for the in-orbit mission phase.</p>


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
M. W. Kunz ◽  
A. A. Schekochihin ◽  
C. H. K. Chen ◽  
I. G. Abel ◽  
S. C. Cowley

A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihinet al.,Astrophys. J. Suppl. Ser., vol. 182, 2009, pp. 310–377) to the case where the mean distribution function of the plasma is pressure-anisotropic and different ion species are allowed to drift with respect to each other – a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas such as the intracluster medium. Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g. the Alfvén ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. Beyond these order-unity corrections, the main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvénic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the Alfvénic cascade is fluid, satisfying RMHD equations (with the Alfvén speed modified by pressure anisotropy and species drifts), whereas the compressive cascade is kinetic and subject to collisionless damping (and for a bi-Maxwellian plasma splits into three independent collisionless cascades). Secondly, the organising principle of this turbulence is elucidated in the form of a conservation law for the appropriately generalised kinetic free energy. It is shown that non-Maxwellian features in the distribution function reduce the rate of phase mixing and the efficacy of magnetic stresses, and that these changes influence the partitioning of free energy amongst the various cascade channels. As the firehose or mirror instability thresholds are approached, the dynamics of the plasma are modified so as to reduce the energetic cost of bending magnetic-field lines or of compressing/rarefying them. Finally, it is shown that this theory can be derived as a long-wavelength limit of non-Maxwellian slab gyrokinetics.


2021 ◽  
Author(s):  
Andrey Fedorov ◽  
Philippe Louarn ◽  
Christopher Owen ◽  
Lubomir Prech ◽  
Timothy Horbury ◽  
...  

<p>During 27th September 2020 NASA Parker Solar Probe (PSP) and ESA-NASA Solar Orbiter (SolO) have been located around the same Carrington longitude and their latitudinal separation was very small as well. Solar wind plasma and magnetic field data obtained throughout this time interval  allows to consider that sometimes the solar wind, observed by both spacecrafts, originates from the same coronal hole region. Inside these time intervals the SolO radial magnetic field experiences several short variations similar to the "switchbacks" regularly observed by PSP. We used the SolO SWA-PAS proton analyzer data to analyze the ion distribution function variations inside such switchback-like events to understand if such events are really "remains" of the alfvenic structures observed below 60 Rs.</p>


2019 ◽  
Vol 37 (5) ◽  
pp. 877-889
Author(s):  
Anatoli A. Petrukovich ◽  
Olga M. Chugunova ◽  
Pavel I. Shustov

Abstract. Observations of Earth's bow shock during high-β (ratio of thermal to magnetic pressure) solar wind streams are rare. However, such shocks are ubiquitous in astrophysical plasmas. Typical solar wind parameters related to high β (here β>10) are as follows: low speed, high density, and a very low interplanetary magnetic field of 1–2 nT. These conditions are usually quite transient and need to be verified immediately upstream of the observed shock crossings. In this report, three characteristic crossings by the Cluster project (from the 22 found) are studied using multipoint analysis, allowing us to determine spatial scales. The main magnetic field and density spatial scale of about a couple of hundred of kilometers generally corresponds to the increased proton convective gyroradius. Observed magnetic variations are different from those for supercritical shocks, with β∼1. Dominant magnetic variations in the shock transition have amplitudes much larger than the background field and have a frequency of ∼ 0.3–0.5 Hz (in some events – 1–2 Hz). The wave polarization has no stable phase and is closer to linear, which complicates the determination of the wave propagation direction. Spatial scales (wavelengths) of variations are within several tens to a couple of hundred of kilometers.


1969 ◽  
Vol 24 (4) ◽  
pp. 555-559 ◽  
Author(s):  
Wolfgang Stiller ◽  
Günter Vojta

Abstract The electron distribution function is calculated explicitly for a weakly ionized plasma under the action of an alternating electric field E = {0 , 0 , Eoz cos ω t} and a circularly polarized magnetic field BR = Bc{cos ωB t, sin ωB t, 0} rotating perpendicular to the a.c. field. Furthermore, a constant magnetic field B0 = {0, 0, B0} is taken into account. The isotropic part f0 of the electron distribution function which contains, in special cases, well-known standard distributions (distributions of Druyvensteyn, Davydov, Margenau, Allis, Fain, Gurevic) shows a resonance behaviour if the frequencies ω, ωc = (q/m) Bc , ω0 = (q/m) B0 , and ωB satisfy the relation ω= This can be understood as a generalized cyclotron resonance phenomenon.


2007 ◽  
Vol 73 (2) ◽  
pp. 179-188 ◽  
Author(s):  
V.L. KRASOVSKY

Abstract.The structure of a stationary electrostatic plasma wave propagating at a right angle to a weak magnetic field is studied. It is shown that the periodic finite amplitude wave is close in its physical structure to Bernstein–Greene–Kruskal wave of a perfectly definite type. The distinguishing feature of such a nonlinear wave is the absence of the resonant particles trapped by the wave. The electron distribution function, density perturbation and the shape of the wave electrostatic potential are found. The nonlinear dispersion relation is derived to determine the frequency shift due to the perturbation of the distribution function in the resonant region.


2016 ◽  
Vol 113 (15) ◽  
pp. 3944-3949 ◽  
Author(s):  
Konstantinos N. Gourgouliatos ◽  
Toby S. Wood ◽  
Rainer Hollerbach

Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star’s outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we present detailed modeling of the evolution of the magnetic field in the crust of a neutron star through 3D simulations. We find that, in the plausible scenario of equipartition of energy between global-scale poloidal and toroidal magnetic components, magnetic instabilities transfer energy to nonaxisymmetric, kilometer-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field. These intense small-scale magnetic features can induce high-energy bursts through local crust yielding, and the localized enhancement of Ohmic heating can power the star’s persistent emission. Thus, the observed diversity in magnetar behavior can be explained with mixed poloidal−toroidal fields of comparable energies.


Sign in / Sign up

Export Citation Format

Share Document