The Impacts of Water Quality Changes on Aquatic Ecosystems: A Case Study of Clariano River, Spain

Author(s):  
Hamed Vagheei ◽  
Paolo Vezza ◽  
Guillermo Palau-Salvador ◽  
Fulvio Boano

<p><strong>The Impacts of Water Quality Changes on Aquatic Ecosystems: A Case Study of Clariano River, Spain </strong></p><p>Hamed Vagheei<sup>1</sup>, Paolo Vezza<sup>2</sup>, Guillermo Palau-Salvador<sup>3</sup>, Fulvio Boano<sup>4</sup></p><ol><li>PhD Student, the Polytechnic University of Turin, [email protected]</li> <li>Assistant professor, the Polytechnic University of Turin, [email protected]</li> <li>Associate Professor, the Polytechnic University of Valencia, [email protected]</li> <li>Associate Professor, the Polytechnic University of Turin, [email protected]</li> </ol><p><strong>Abstract</strong></p><p>Water quality degradation resulting from different anthropogenic activities such as agriculture, deforestation and urbanization is a serious worldwide challenge which have negative impacts on aquatic ecology. Unfortunately, it is still difficult to quantitatively determine the impacts of water quality changes on aquatic communities. The objective of the present research activity is to investigate aquatic ecosystem responses to water quality deterioration using a case study of Clariano River, Spain. The Clariano River faces low water quality and the loss of biodiversity in some parts as a result of agricultural, industrial and livestock activities as well as wastewater treatment plants (WWTP) effluents entering the river. The Soil and Water Assessment Tool (SWAT), an eco-hydrological model, is used in the present study for the modelling of discharge, sediment and nutrients. SWAT-CUP is also used to calibrate and validate the SWAT model. We are currently employing the results from the calibrated model to obtain a better understanding of possible relations between water quality and biodiversity. In fact, the present study will focus on macroinvertebrates as biological indicators of stream health, and the model predictions will be coupled with empirical correlations between stream water quality and macroinvertebrates presence in order to assess the impacts of water quality changes on aquatic ecosystem. In addition, different model scenarios will be compared to explore the potential impacts of changes in land use, climate and WWTPs operation on the aquatic ecosystem.</p><p><strong>Keywords:</strong> aquatic ecosystem, Clariano River, eco-hydrological modelling, water quality, water resources management</p>

2021 ◽  
Author(s):  
Hamed Vagheei ◽  
Paolo Vezza ◽  
Guillermo Palau-Salvador ◽  
Fulvio Boano

<p><strong>Abstract</strong></p><p>Freshwater ecosystems provide many benefits to a variety of species but, unfortunately, human-caused environmental issues are undermining their ability to provide key functions and services. Changes in climate and land use, for instance, impact the habitat suitability for freshwater organisms by affecting water quantity and quality. Nutrients, pesticides, heavy metals and other contaminants which are released to the environment as a result of anthropogenic activities have the potential to degrade the environment and damage freshwater communities. Hence, the present research activity aims to investigate aquatic ecosystem responses to environmental deterioration using a case study of Clariano River, Spain. The Soil and Water Assessment Tool (SWAT) is used as an eco-hydrological tool to model discharge, sediment and nutrients, and to predict the biological status in Clariano River under different scenarios. As the diversity and presence of species represent the quality of ecosystem, this study focuses on macroinvertebrates as biological indicators of stream health. The SUFI-2 algorithm in the SWAT-CUP program is used for the calibration, validation, sensitivity and uncertainty analysis of the SWAT model. The results from the calibrated model are then coupled to regression equations between measured nutrient concentrations and values of several macrobenthic metrics in six sampling sites along the Clariano River. The coupling of these regression equations with concentrations simulated with SWAT for different scenarios allows to improve the understanding of the relations between environmental changes in watersheds, nutrient concentrations, and the biologic status of stream water.</p><p><strong>Keywords:</strong> water quality, macroinvertebrates, environmental degradation, eco-hydrological modelling, Clariano River</p>


2014 ◽  
Vol 21 (23) ◽  
pp. 13412-13419 ◽  
Author(s):  
Jin-Song Liu ◽  
Ling-Chuan Guo ◽  
Xian-Lin Luo ◽  
Fan-Rong Chen ◽  
Eddy Y. Zeng

2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


1991 ◽  
Vol 24 (6) ◽  
pp. 25-33
Author(s):  
A. J. Jakeman ◽  
P. G. Whitehead ◽  
A. Robson ◽  
J. A. Taylor ◽  
J. Bai

The paper illustrates analysis of the assumptions of the statistical component of a hybrid modelling approach for predicting environmental extremes. This shows how to assess the applicability of the approach to water quality problems. The analysis involves data on stream acidity from the Birkenes catchment in Norway. The modelling approach is hybrid in that it uses: (1) a deterministic or process-based description to simulate (non-stationary) long term trend values of environmental variables, and (2) probability distributions which are superimposed on the trend values to characterise the frequency of shorter term concentrations. This permits assessment of management strategies and of sensitivity to climate variables by adjusting the values of major forcing variables in the trend model. Knowledge of the variability about the trend is provided by: (a) identification of an appropriate parametric form of the probability density function (pdf) of the environmental attribute (e.g. stream acidity variables) whose extremes are of interest, and (b) estimation of pdf parameters using the output of the trend model.


2018 ◽  
Vol 18 (2) ◽  
Author(s):  
Helmy Akbar ◽  
Iwan Suyatna ◽  
Jailani Jailani ◽  
Singgih Afifa Putra ◽  
Fauziah Azmi

Increased human activity towards the water bodies will change the condition of water quality. Case study in Langsa, Aceh, It was found that an increase in Some physical parameter (TSS) that exceeds the value determined in PP 82 of 2001 (Indonesian government standard). The high value of TSS in Station 2 and Station 3 indicates that the sediment loading to the water body is high, especially in Station 3, where the TSS concentrations far exceed the standard. Activity of type C surface mining materials tends to affect the brightness, turbidity, depth and TSS. Water conditions with low pH were also found in this study. In location studied no EPT larvae were found Keyword: Langsa, Water Quality, Stream, Total Suspended Solid, Anthropogenic Activity


2020 ◽  
Vol 8 (1) ◽  
pp. 99-116
Author(s):  
Bahare Lorestani ◽  
Hajar Merrikhpour ◽  
Mehrdad Cheraghi ◽  
◽  
◽  
...  

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 410 ◽  
Author(s):  
Eeshan Kumar ◽  
Dharmendra Saraswat ◽  
Gurdeep Singh

Researchers and federal and state agency officials have long been interested in evaluating location-specific impact of bioenergy energy crops on water quality for developing policy interventions. This modeling study examines long-term impact of giant miscanthus and switchgrass on water quality in the Cache River Watershed (CRW) in Arkansas, United States. The bioenergy crops were simulated on marginal lands using two variants of a Soil and Watershed Assessment Tool (SWAT) model. The first SWAT variant was developed using a static (single) land-use layer (regular-SWAT) and for the second, a dynamic land-use change feature was used with multiple land use layers (location-SWAT). Results indicated that the regular-SWAT predicted larger losses for sediment, total phosphorus and total nitrogen when compared to location-SWAT at the watershed outlet. The lower predicted losses from location-SWAT were attributed to its ability to vary marginal land area between 3% and 11% during the 20-year modeling period as opposed to the regular-SWAT that used a fixed percentage of marginal land area (8%) throughout the same period. Overall, this study demonstrates that environmental impacts of bioenergy crops were better assessed using the dynamic land-use representation approach, which would eliminate any unintended prediction bias in the model due to the use of a single land use layer.


Sign in / Sign up

Export Citation Format

Share Document