First proofs of preservation of a Mesozoic paleorelief in Southeast Africa: Insights from the (U-Th)/He dating of iron oxides from Malawian duricrusts

Author(s):  
Maximilien Mathian ◽  
Guillaume Baby ◽  
Jean-Noël Ferry ◽  
François Guillocheau ◽  
Thierry Allard ◽  
...  

<p>Approximately 70% of the emerged relief on the Earth is characterized by erosional low-gradient topography also known as planation surfaces (PS). Many geomorphologists defend the idea that some of these surfaces could be relics of old reliefs uplifted and preserved from erosion for tens of millions years. Some of the highest PS of Southeast Africa (> 2000 m) were considered by King (1962) as remnants of an ante-Cretaceous paleorelief called “Gondwana Surface”. Specifically, the Nyika Plateau (Northern Malawi, 2200 m) is one of the largest potential relics of the “Gondwana Surface” in Southeastern Africa. This PS overlooks the stripped etchplain of the Malawian Plateau, a potential Late Cretaceous PS about 1200 m of elevation.</p><p>However, the preservation of such ancient reliefs is controversial, particularly under a tropical wet-dry climate. Doubts about the ages of these PS exist mainly due to the lack of a precise chronology of these objects on a continental scale. In detail, African PS are often covered by preserved or partly eroded tropical weathering covers such as unconsolidated laterites and/or duricrusts. Under these climatic conditions, lateritic duricrusts can be preserved for millions of years and thus contain several generations of iron oxides witnesses of past local paleoenvironment and geodynamic evolution. In order to understand the formation and preservation of the Southeast African highest PS and date them, we decided to apply (U-Th)/He dating of iron oxides on selected duricrust samples. The exploration of the Nyika Plateau allowed the discovery of an outcropping duricrust and a depositional area of eroded duricrust blocks from different origins. We study duricrust samples from these two areas in order to find some clues about the plateau antiquity and to improve our knowledge about the local paleoclimatic and geodynamic history.</p><p>Samples from the in situ duricrust levels, outcropping on the plateau, are polygenic and are formed by three main types of zones: preserved and degraded hematite-rich zones, that are considered to correspond to the initial generation of iron oxides, and a goethitic matrix. The preserved hematites have a Mesozoic (U-Th)/He ages, whereas the goethite-rich matrix of this duricrust formed during the Quaternary. The degraded hematite-rich parts, also rich in quartz, have more dispersed ages ranging from the Mesozoic to the Tertiary. In the detrital accumulation zone, blocks from a similar duricrust were found as well as blocks of another type of duricrusts: a pisolithic one rich in goethite. This last type of duricrust was eroded from a more recent duricrust level, as their iron oxides have Late Tertiary/Quaternary ages. These dating proved the Nyika Plateau relative stability since the Mesozoic period, confirming that duricrusting of reliefs in tropical area can also protect old emerged landscapes from total erosion.</p><p>King L.C. (1962) Morphology of Earth, Oliver and Boyld, Edinburg.</p><p> </p>

2018 ◽  
Author(s):  
Collin B. Edwards ◽  
Louie Yang

AbstractSeveral studies have documented a global pattern of phenological advancement that is consistent with ongoing climate change. However, the magnitude of these phenological shifts is highly variable across taxa and locations. This variability of phenological responses has been difficult to explain mechanistically. To examine how the evolution of multi-trait cueing strategies could produce variable responses to climate change, we constructed a model in which organisms evolve strategies that integrate multiple environmental cues to inform anticipatory phenological decisions. We simulated the evolution of phenological cueing strategies in multiple environments, using historic climate data from 78 locations in North America and Hawaii to capture features of climatic correlation structures in the real world. Organisms in our model evolved diverse strategies that were spatially autocorrelated across locations on a continental scale, showing that similar strategies tend to evolve in similar climates. Within locations, organisms often evolved a wide range of strategies that showed similar response phenotypes and fitness outcomes under historical conditions. However, these strategies responded differently to novel climatic conditions, with variable fitness consequences. Our model shows how the evolution of phenological cueing strategies can explain observed variation in phenological shifts and unexpected responses to climate change.


2021 ◽  
Author(s):  
Yueling Ma ◽  
Carsten Montzka ◽  
Bagher Bayat ◽  
Stefan Kollet

<p>Near real-time groundwater table depth measurements are scarce over Europe, leading to challenges in monitoring groundwater resources at the continental scale. In this study, we leveraged knowledge learned from simulation results by Long Short-Term Memory (LSTM) networks to estimate monthly groundwater table depth anomaly (<em>wtd<sub>a</sub></em>) data over Europe. The LSTM networks were trained, validated, and tested at individual pixels on anomaly data derived from daily integrated hydrologic simulation results over Europe from 1996 to 2016, with a spatial resolution of 0.11° (Furusho-Percot et al., 2019), to predict monthly <em>wtd<sub>a</sub></em> based on monthly precipitation anomalies (<em>pr<sub>a</sub></em>) and soil moisture anomalies (<em>θ<sub>a</sub></em>). Without additional training, we directly fed the networks with averaged monthly <em>pr<sub>a</sub></em> and <em>θ<sub>a</sub></em> data from 1996 to 2016 obtained from commonly available observational datasets and reanalysis products, and compared the network outputs with available borehole <em>in situ</em> measured <em>wtd<sub>a</sub></em>. The LSTM network estimates show good agreement with the <em>in situ</em> observations, resulting in Pearson correlation coefficients of regional averaged <em>wtd<sub>a</sub></em> data in seven PRUDENCE regions ranging from 42% to 76%, which are ~ 10% higher than the original simulation results except for the Iberian Peninsula. Our study demonstrates the potential of LSTM networks to transfer knowledge from simulation to reality for the estimation of <em>wtd<sub>a</sub></em> over Europe. The proposed method can be used to provide spatiotemporally continuous information at large spatial scales in case of sparse ground-based observations, which is common for groundwater table depth measurements. Moreover, the results highlight the advantage of combining physically-based models with machine learning techniques in data processing.</p><p> </p><p>Reference:</p><p>Furusho-Percot, C., Goergen, K., Hartick, C., Kulkarni, K., Keune, J. and Kollet, S. (2019). Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation. Scientific Data, 6(1).</p>


2001 ◽  
Vol 2001 ◽  
pp. 89-89
Author(s):  
M. A. Akbar ◽  
P. Lebzien ◽  
G. Flachowsky

The fresh weight, dry matter (DM) contents and nutritional quality in maize vary considerably with variation in varieties, stages at which harvested, climatic conditions and agronomic factors. Recently, agronomists, nutritionists, and dairy producers have placed increased emphasis on factors affecting the nutritive value of maize. However, very little information is available on quantitative variability of the feed value of maize fodder as affected by such factors. This study was, therefore, carried out to assess the effect of harvesting of six different maize varieties at two stages (dates) of grain maturity on quality of both the stover and cobs.


1996 ◽  
Vol 33 (6) ◽  
pp. 875-895 ◽  
Author(s):  
A. Duk-Rodkin ◽  
R. W. Barendregt ◽  
C. Tarnocai ◽  
F. M. Phillips

A stratigraphic sequence of unconsolidated sediments ranging in age from Late Pliocene to Late Pleistocene is recorded in the Canyon Ranges of the Mackenzie Mountains. Three of the sections (Katherine Creek, Little Bear River, and Inlin Brook) expose bedrock and Tertiary gravel overlain by colluvium and a multiple till sequence of montane origin, separated by paleosols and capped by a till of Laurentide origin. The sections are correlated on the basis of lithology, paleosol development, paleomagnetism, and chlorine dating of surface boulder erratics. A formal stratigraphic nomenclature is proposed for the deposits of this region. The sequence of glacial tills separated by paleosols reflects a long record of glacial–interglacial cycles. Soil properties from the oldest paleosol to modern soil show a general decrease in the degree of soil development, suggesting a progressive deterioration of interglacial climatic conditions. A normal–reverse–normal sequence of remanent magnetization was determined within the stratigraphic succession and assigned to the Gauss–Matuyama–Brunhes chrons, respectively. A Gauss age was assigned to the basal colluvium, an early Matuyama age (including Olduvai) to the first two tills, and a Brunhes age to the last three tills. Laurentide deposits are of Late Wisconsinan age and are restricted to the uppermost part of the stratigraphic succession. Chlorine dates for surface boulders place the all-time limit of the Laurentide Ice Sheet at about 30 ka. The Late Wisconsinan Laurentide Ice Sheet was the only continental ice to reach the Mackenzie and Richardson mountains of the northern Cordillera.


Soil Research ◽  
1963 ◽  
Vol 1 (1) ◽  
pp. 74 ◽  
Author(s):  
KG Tiller

The mineralogy and chemistry of weathering and soil formation have been studied at 17 widely separated sites with contrasting climatic conditions on comparatively uniform dolerite in Tasmania. The clay and fine sand mineralogy of the soils has been related to their degree of weathering. These studies have shown large chemical and mineralogical changes accompanying the initial stages of weathering in some krasnozem soils. The reorganization of cobalt, zirconium, nickel, copper, molybdenum, manganese, and zinc during genesis of four soil groups has been considered in terms of the factors involved. Some of these results indicate that the clay horizon of the podzolic soils has probably been formed by weathering in situ. Seasonal waterlogging in certain horizons has strongly mfluenced the chemistry and mineralogy of weathering in many of these soils. This study has shown that the composition of the parent material has only influenced the geochemistry of trace elements in less weathered soils and that pedogenic factors assumed greater significance as the soils became more strongly weathered. Geomorphic processes had a marked influence on the geochemistry of some soils by the truncation of mature soil profiles.


Soil Research ◽  
1979 ◽  
Vol 17 (2) ◽  
pp. 197 ◽  
Author(s):  
RH Gunn ◽  
DP Richardson

Extensive areas of salt-affected soils in eastern Australia occur on the exposed lower zones of lateritic profiles or in derived materials. Analyses of 96 samples of mottled and pallid zones collected in this study show that they generally contain appreciable soluble salts, predominantly sodium chloride, particularly where they developed in argillaceous sedimentary rocks which underlie about two-thirds of the area, and in some granitic rocks. Analyses of 96 samples of unweathered rocks indicate that some contain moderate to appreciable quantities of sodium and chloride, and it is suggested that these and other soluble ions accumulated in the lower zones as a result of deep weathering in the Mid-Tertiary. Atmospheric accessions of sea salts in rain or dry fallout at present rates account partly for the occurrence of salt-affected soil landscapes in some coastal areas but are unlikely sources of salts far inland. Soils formed in situ on weathered basalt, argillaceous sedimentary and granitic rocks which have been exposed at the surface since the Late Tertiary are not salt-affected, because climatic, topographic and hydrologic conditions are different from those of the Mid-Tertiary and only small volumes of rock are involved.


2020 ◽  
Vol 12 (24) ◽  
pp. 4058
Author(s):  
Hassan Bazzi ◽  
Nicolas Baghdadi ◽  
Ibrahim Fayad ◽  
François Charron ◽  
Mehrez Zribi ◽  
...  

Better management of water consumption and irrigation schedule in irrigated agriculture is essential in order to save water resources, especially at regional scales and under changing climatic conditions. In the context of water management, the aim of this study is to monitor irrigation activities by detecting the irrigation episodes at plot scale using the Sentinel-1 (S1) C-band SAR (synthetic-aperture radar) time series over intensively irrigated grassland plots located in the Crau plain of southeast France. The method consisted of assessing the newly developed irrigation detection model (IDM) at plot scale over the irrigated grassland plots. First, four S1-SAR time series acquired from four different S1-SAR acquisitions (different S1 orbits), each at six-day revisit time, were obtained over the study site. Next, the IDM was applied at each available SAR image from each S1-SAR series to obtain an irrigation indicator at each SAR image (no, low, medium, or high irrigation possibility). Then, the irrigation indicators obtained at each image from each S1-SAR time series (four series) were added and combined by threshold value criteria to determine the existence or absence of an irrigation event. Finally, the performance of the IDM for irrigation detection was assessed by comparing the in situ recorded irrigation events at each plot and the detected irrigation events. The results show that using only the VV polarization, 82.4% of the in situ registered irrigation events are correctly detected with an F_score value reaching 73.8%. Less accuracy is obtained using only the VH polarization, where 79.9% of the in situ irrigation events are correctly detected with an F_score of 72.2%. The combined use of the VV and VH polarization showed that 74.1% of the irrigation events are detected with a higher F_score value of 76.4%. The analysis of the undetected irrigation events revealed that, in the presence of very well-developed vegetation cover (normalized difference of vegetation index (NDVI) ≥ 0.8); higher uncertainty in irrigation detection is observed, where 80% of the undetected events correspond to an NDVI value greater than 0.8. The results also showed that small-sized plots encounter more false irrigation detections than large-sized plots certainly because the pixel spacing of S1 data (10 m × 10 m) is not adapted to small size plots. The obtained results prove the efficiency of the S1 C-band data and the IDM for detecting irrigation events at the plot scale, which would help in improving the irrigation water management at large scales especially with availability and global coverage of the S1 product.


2019 ◽  
Vol 65 (252) ◽  
pp. 605-616 ◽  
Author(s):  
SOJIRO SUNAKO ◽  
KOJI FUJITA ◽  
AKIKO SAKAI ◽  
RIJAN B. KAYASTHA

ABSTRACTWe conducted a mass-balance study of debris-free Trambau Glacier in the Rolwaling region, Nepal Himalaya, which is accessible to 6000 m a.s.l., to better understand mass-balance processes and the effect of precipitation on these processes on high-elevation Himalayan glaciers. Continuous in situ meteorological and mass-balance observations that spanned the three melt seasons from May 2016 are reported. An energy- and mass-balance model is also applied to evaluate its performance and sensitivity to various climatic conditions. Glacier-wide mass balances ranging from −0.34 ± 0.38 m w.e. in 2016 to −0.82 ± 0.53 m w.e. in 2017/18 are obtained by combining the observations with model results for the areas above the highest stake. The estimated long-term glacier mass balance, which is reconstructed using the ERA-Interim data calibrated with in situ data, is −0.65 ± 0.39 m w.e. a−1for the 1980–2018 period. A significant correlation with annual precipitation (r= 0.77,p< 0.001) is observed, whereas there is no discernible correlation with summer mean air temperature. The results indicate the continuous mass loss of Trambau Glacier over the last four decades, which contrasts with the neighbouring Mera Glacier in balance.


2017 ◽  
Vol 321 ◽  
pp. 228-237 ◽  
Author(s):  
Di Zhang ◽  
Huaming Guo ◽  
Wei Xiu ◽  
Ping Ni ◽  
Hao Zheng ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document