Finding the right tree for future urban planning – Meso- to microscale model coupling in urban areas

Author(s):  
Joachim Fallmann ◽  
Helge Simon ◽  
Tim Sinsel ◽  
Marc Barra ◽  
Holger Tost

<p><span>It has been long understood that green infrastructure helps to mitigate urban heat island formation and therefore should be a key strategy in future urban planning practices. Due to its high level of heat resilience, the sycamore tree (Platanus) dominates the appearance of urban landscapes in central Europe. Under extreme climate conditions however, these species tend to emit high levels of biogenic volatile organic compounds (BVOCs) which in turn can act as precursors for tropospheric ozone, especially in highly NOx polluted environments such as urban areas. </span></p><p><span>Assessing the ozone air quality of a large urban area in Germany we use the state-of-the art regional chemical transport model MECO(n), with chemistry coming from the Modular Earth Submodel System (MESSy) and meteorology being calculated by COSMO. Including the latest version of TERRA_URB, the model is configured for the Rhine-Main urban area. In a second step, we implement parts of the regional atmospheric chemistry mechanism in the ENVI-met model framework in order to investigate the impact of isoprene emissions on ozone concentration at street level for the urban area of Mainz, Germany. </span></p><p><span>Whereas mesoscale model results only show moderate mean ozone pollution over the model area, at micro-scale level on selected hot spots we find a clear relationship between urban layout, proximity to NOx emitters, tree-species-dependent isoprene emission capacity and increase in ozone concentration. The ENVI-met study reveals, that next to tree species, its location is a key factor for its micro-climatic UHI and air pollution mitigation potential. We could show, that isoprene related ozone concentration is highly sensitive to leaf temperature, photosynthetic active radiation as well as to the proximity to NO2 pollution sources. In a street canyon with high traffic load we find significant correlations between diurnal boundary layer dynamics, morning and evening rush hour and ambient ozone levels. For a hot summer day in particular, we simulate ozone concentrations rising up to 500% within a weakly ventilated street canyon with a high amount of strong isoprene emitters being present.</span></p><p><span>We summarize that combining findings from meso- and microscale model systems can be an important asset for science tools for cities in the framework of climate change adaption and mitigation </span><span>and air pollution abatement</span><span> strategies.</span></p>

2021 ◽  
Vol 9 (1) ◽  
pp. 31-44
Author(s):  
Masoud Hatamimanesh ◽  
◽  
Samar Mortazavi ◽  
Eisa Solgi ◽  
Ahmad Mohtadi ◽  
...  

Background: In the present study, the tolerance of plantain tree species (Platanus orientalis, Morus nigra and Ailanthus altissima) to air pollution was evaluated using Air Pollution Tolerance Index (ATPI) and Anticipated Performance Index (API) index in Isfahan city (Iran). Methods: For this purpose, three dominant trees growing at six stations in Isfahan was selected and then sampling of the tree leaves was performed, after being transferred to the laboratory, the ATPI and API index were calculated. Results: The results of calculating the ATPI in the leaves of M. nigra, P. orientalis and A. altissima species showed that the highest values of ATPI index was obtained in M. nigra at 20.77 and then detected in P. orientalis and A. altissima with the values 14.90 and 14.33 respectively. According to API values Morus nigra had the best performance (Score = 6 so it classified as the Excellent) while P. orientalis and A. altissima had very good and intermediate performance, respectively. Conclusion: According to ATPI and API index most tolerant tree species was Morus nigra, so it would be the most suitable species for plantation programme in urban and pollutant areas followed by Platanus orientalis and Ailanthus altissima. As well as our results suggest that Platanus orientalis and Ailanthus altissima can be used as bio-indicators of air pollution due to their low ATPI scores (lower than 16). The present study suggests that the combination of both the ATPI and API indices for identifying and selection of plant species is very useful for plantation in urban areas.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 496
Author(s):  
Kyung Hwan Kim ◽  
Kyung-Hwan Kwak ◽  
Jae Young Lee ◽  
Sung Ho Woo ◽  
Jong Bum Kim ◽  
...  

In this work, a 2-D gridded air pollution map with a high resolution of 50 × 50 m2 was proposed to help the exposure assessment studies focusing on the association between air pollutants and their health effects. To establish a reliable air pollution map in a 2 × 2 km2 urban area, a mobile monitoring procedure and a data process were developed. Among the various vehicle-related air pollutants, the particle-bound polycyclic aromatic hydrocarbon (pPAH) was chosen as a sensitive indicator. The average pPAH concentration on major roads (293.1 ng/m3) was found to be 35 times higher than that at a background location (8.4 ng/m3). Based on the cell-based pPAH concentrations, the 50 × 50 m2 cells in the air pollution map were categorized into five pollution levels. The higher air pollution levels were generally shown by the cells close to the major traffic emission points. The proposed map can be used to make various policies regarding land use and traffic flow control in urban areas. Estimation of the personal exposure level to air pollutants is possible at a reliable location using the highly resolved 2-D gridded air pollution map in exposure assessment studies.


2020 ◽  
Vol 12 (5) ◽  
pp. 1897
Author(s):  
Shaodong Wang ◽  
Yanbin Liu ◽  
Wei Zhi ◽  
Xihua Wen ◽  
Weihua Zhou

With the rapid development of communication and transportation technologies, the urban area is increasingly becoming an ever more dynamic, comprehensive, and complex system. Meanwhile, functional polycentricity as a distinctive feature has been characterizing urban areas around the world. However, the spatial structure of the urban area has yet to be fully comprehended from a dynamic perspective, and understanding the spatial organization of polycentric urban regions (PUR) is crucial for issues related to urban planning, traffic control, and urban risk management. The analysis of polycentricity strongly depends on the spatial scale. In order to identify functional polycentricity at the intra-unban scale, this paper presents a traffic flow-embedded and topic modeling-based methodology framework. This framework was evaluated on real-world datasets from the Wujiang district, Suzhou, China, which contains 151,419 records of taxi trajectory data and 86,036 records of points of interest (POI) data. This paper provides a novel approach to examining urban functional polycentricity via combining urban function distribution and spatial interactions. This proposed methodology can help urban authorities better understand urban dynamics in terms of function distribution and internal connectedness and facilitate urban development in terms of urban planning and traffic control.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 154 ◽  
Author(s):  
Helge Simon ◽  
Joachim Fallmann ◽  
Tim Kropp ◽  
Holger Tost ◽  
Michael Bruse

Climate sensitive urban planning involves the implementation of green infrastructure as one measure to mitigate excessive heat in urban areas. Depending on thermal conditions, certain trees tend to emit more biogenic volatile organic compounds, which act as precursors for ozone formation, thus hampering air quality. Combining a theoretical approach from a box model analysis and microscale modeling from the microclimate model ENVI-met, we analyze this relationship for a selected region in Germany and provide the link to air quality prediction and climate sensitive urban planning. A box model study was conducted, indicating higher ozone levels with higher isoprene concentration, especially in NO-saturated atmospheres. ENVI-met sensitivity studies showed that different urban layouts strongly determine local isoprene emissions of vegetation, with leaf temperature, rather than photosynthetic active radiation, being the dominant factor. The impact of isoprene emission on the ozone in complex urban environments was simulated for an urban area for a hot summer day with and without isoprene. A large isoprene-induced relative ozone increase was found over the whole model area. On selected hot spots we find a clear relationship between urban layout, proximity to NOx emitters, tree-species-dependent isoprene emission capacity, and increases in ozone concentration, rising up to 500% locally.


Author(s):  
Sirajuddin M Horaginamani ◽  
M Ravichandran

Though water and land pollution is very dangerous, air pollution has its own peculiarities, due to its transboundary dispersion of pollutants over the entire world. In any well planned urban set up, industrial pollution takes a back seat and vehicular emissions take precedence as the major cause of urban air pollution. Air pollution is one of the serious problems faced by the people globally, especially in urban areas of developing countries like India. All these in turn lead to an increase in the air pollution levels and have adverse effects on the health of people and plants. Western countries have conducted several studies in this area, but there are only a few studies in developing countries like India. A study on ambient air quality in Tiruchirappalli urban area and its possible effects selected plants and human health has been undertaken, which may be helpful to bring out possible control measures. Keywords: ambient air quality; respiratory disorders; APTI; human health DOI: 10.3126/kuset.v6i2.4007Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.13-19


2015 ◽  
Vol 3 (2) ◽  
pp. 01
Author(s):  
G. Martins ◽  
R. L. S. Ferraz ◽  
J. L. Batista ◽  
M. A. Barbosa

<p>Em decorrência de atividades antrópicas exploratórias, tem ocorrido aumento na supressão de espécies arbóreas, refletindo na biodiversidade e equilíbrio dos ecossistemas, reduzindo a população de espécies de abelhas.<strong> </strong>Objetivou-se com este trabalho, fazer um levantamento da ocorrência de árvores, nidificações e espécies de abelhas com intuito de incentivar o plantio de espécimes, principalmente nativos, na área urbana, para que ocorra uma maior proliferação das abelhas indígenas sem ferrão. Para tanto, realizou-se um estudo na Praça Dr. Joaquim Batista na cidade de Jaboticabal, SP. Através de consultas em literatura especializada, identificou-se o número de espécies arbóreas e abelhas sem ferrão, o número e altura média de nidificações, além da coleta de sementes para produção de mudas. Foram identificadas 27 espécies de árvores nativas, 14 exóticas, cinco de abelhas sem ferrão, 37 nidificações, com altura média geral de 2,3 m, além da produção de 20 mudas nativas. A elevada ocorrência de nidificações em plantas nativas e a presença de sementes, demonstram a adaptabilidade destes polinizadores, além de subsidiar a viabilidade da proposta de incentivar o plantio de espécimes, principalmente nativas em área urbana para a proliferação das abelhas indígenas sem ferrão. Estudos complementares podem ser realizados visando educação ambiental nestes locais.</p><p align="center"><strong>Encouraging the planting of native trees in the urban area for proliferation of stingless bees</strong></p><p>As a result of exploratory human activities, there has been an increase in the suppression of tree species, reflecting on biodiversity and ecosystem balance, reducing the population of bee species. The objective of this work, to survey the occurrence of trees, Nest establishment and bee species in order to encourage the planting of species, mostly native, in urban areas, so that there is a higher proliferation of indigenous stingless bees. Therefore, we carried out a study in Dr. Joaquim Batista Square in the city of Jaboticabal, SP. Through consultations in the literature, we identified the number of tree species and stingless bees, the average number and height of Nest establishment, besides the collection of seeds for seedlings. They identified 27 species of native trees, 14 exotic, five of stingless bees, 37 Nest establishment, with overall average height of 2.3 m, in addition to producing 20 native seedlings. The high occurrence of Nest establishment of native plants and the presence of seeds demonstrate the adaptability of these pollinators, in addition to supporting the viability of the proposal to encourage the planting of specimens, especially in urban areas native to the proliferation of indigenous stingless bees. Additional studies can be conducted to environmental education in these places.</p>


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2797
Author(s):  
Edina Simon ◽  
Vanda Éva Molnár ◽  
Domonkos Lajtos ◽  
Dina Bibi ◽  
Béla Tóthmérész ◽  
...  

We used the Air Pollution Tolerance Index (APTI), the amount of PM5 and PM10, and the elemental analysis of leaves to explore the sensitivity of tree species to air pollution. We assessed the tolerance of Robinia pseudoacacia, Acer saccharinum, Tilia × europaea, Acer platanoides, Fraxinus excelsior, Betula pendula, Celtis occidentalis, and Platanus × acerifolia to the amount of dust, APTI, and the elemental concentration of leaves. Leaves were collected in Debrecen (Hungary), which has a high intensity of vehicular traffic. The highest amount of PM (both PM10 and PM5) was found on the leaves of A. saccharinum and B. pendula. Our results demonstrated that A. saccharinum was moderately tolerant, while P. acerifolia was intermediate, based on the APTI value. There was a significant difference in the parameters of APTI and the elemental concentration of leaves among species. We found that tree leaves are reliable bioindicators of air pollution in urban areas. Based on the value of APTI, A. saccharinum and P. acerifolia, and based on PM, A. saccharinum and B. pendula are recommended as pollutant-accumulator species, while other studied species with lower APTI values are useful bioindicators of air pollution. The results support landscape engineers and urban developers in finding the best tree species that are tolerant to pollution and in using those as proxies of urban environmental health.


2007 ◽  
Vol 10 (04) ◽  
pp. 581-597 ◽  
Author(s):  
BELLIE SIVAKUMAR ◽  
WESLEY W. WALLENDER ◽  
WILLIAM R. HORWATH ◽  
JEFFREY P. MITCHELL

Applications of nonlinear dynamic tools for studying air pollution are gaining attention. Studies on ozone concentration in urban areas have reported the presence of low-dimensional deterministic natures and thus the possibility of good predictions of air pollution dynamics. In light of these encouraging results, a nonlinear deterministic approach is employed herein to study air pollution dynamics in a rural, and largely agricultural, setting in California. Specifically, air quality index (AQI) data observed at the University of California, Davis/National Oceanic and Atmospheric Administration (UCD/NOAA) climate station are studied. Four different daily AQI types of data are analyzed: maximum, minimum, difference (between maximum and minimum), and average. The correlation dimension method, a nonlinear dynamic technique that uses phase–space reconstruction and nearest neighbor concepts, is employed to identify the nature of the underlying dynamics, whether high-dimensional or low-dimensional. Correlation dimensions of 5.12, 6.20, 6.68, and 5.84 obtained for the above four series, respectively, indicate the presence of low-dimensional deterministic behavior, with six or seven dominant governing variables in the underlying dynamics. The dimension results and number of variables are in reasonable agreement with those reported by past studies, even though the studied data are different: rural versus urban, and AQI versus ozone concentration. Future efforts will focus on strengthening the present results on the nature of air pollution dynamics, identifying the actual governing variables, and predictions of air pollution dynamics.


Sign in / Sign up

Export Citation Format

Share Document