Progressive landslide activity analysis and monitoring from Multi-temporal high-resolution geoinfomatic data sets

Author(s):  
Kuo-Jen Chang ◽  
Chih-Ming Tseng ◽  
Ho-Hsuan Chang ◽  
Mei-Jen Huang

<p>Due to the high seismicity and high annual precipitation, numerous landslides have occurred and caused severe impact in Taiwan. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precise geoinformation. The Small unmanned aircraft system (sUAS) has been widely used in landslide monitoring and geomorphic change detection. To access potential hazards we combine sUAS, field survey, terrestrial laser scanner (ground LiDAR) and UAS LiDAR for data acquisition. Based on the methods we construct multi-temporal high-resolution DTMs so as to access the activity and to monitoring the creeping landslides in Paolai village, southern Taiwan. The data set are qualified from 21 ground control points (GCPs) and 11 check points (CPs) based on real-time kinematic-global positioning system (RTK-GPS) and VBS RTK-GPS (e-GNSS). Since 2015, more than 10 geospatial datasets have been produced for an area between 5-80 Km<sup>2</sup> with 8-12 cm spatial resolution. These datasets were then compared with the airborne LiDAR data to access the quality and interpretability of the data sets. Since 2017, we integrate UAS LiDAR to monitoring landslide area, and re-evaluate the data accuracy. Since 2018 we have integrate UAS LiDAR, terrestrial LiDAR, and photogrammetric point cloud for landslide study, to ensure no shadow effect of the dataset. The geomorphologic changes and landslide activities were quantified in Paolai area. The results of this study provide not only geoinfomatic datasets of the hazardous area, but also for essential geomorphologic information for other study, and for hazard mitigation and planning, as well.</p>

Author(s):  
C.-L. J. Hung ◽  
C.-W. Tseng ◽  
M.-J. Huang ◽  
C.-M. Tseng ◽  
K.-J. Chang

<p><strong>Abstract.</strong> Due to the high seismicity and high annual rainfall, numerous landslides occurred and caused severe impacts in Taiwan. Typhoon Morakot in 2009 brought extreme and long-time rainfall, and caused severe disasters. After 2009, numerous large scale deep-seated landslides may still creeping, however not necessary easily to inspect the activity. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious geoinformation. Accordingly, the Small unmanned aircraft system (sUAS) has been widely used in landslide monitoring and geomorphic change detection. This study used UAS to continuously monitor a landslide area in Baolai Village in southern Taiwan, which had a catastrophic landslide event triggered by heavy rainfall caused by Typhoon Morakot in 2009. In order to accesses the potential hazards, this study integrates UAS, field geomatic survey, terrestrial laser scanner (ground LiDAR), and UAS LiDAR for sequential data acquisition since 2015. Based on the methods we are able to construct multi-temporal and high resolution DTMs, so as to access the activity and to monitoring the creeping landslides. The data set are qualified from 21 ground control points (GCPs) and 11 check points (CPs) based on real-time kinematic-global positioning system (RTK-GPS) and VBS RTK-GPS (e-GNSS). More than 10 UAS flight missions for the study areas dated since 2015, for an area large than 5&amp;ndash;40 Km<sup>2</sup> with 8&amp;ndash;12 cm spatial resolution (GSD). Then, the datasets was compared with the airborne LiDAR data, to evaluate the quality and the interpretability of the dataset. Since early 2018, we integrate UAS LiDAR technology to scanning the sliding area. The density of the point cloud data sets are higher than 250 and 100 points/m2 for the total and ground point, respectively. The spatial distributions of geomorphologic changes were quantified firstly with the GCPS and CPs. The potential disaster was evaluated at different times, and the result reveals that most active regions were on the eastern side of the landslide. Significant changes in elevation were detected before the middle of 2017, however reactivated again since middle of 2018. The results of this study provide not only geoinfomatic datasets of hazardous area, but also for essential geomorphologic information/methods for other study, and for hazard mitigation and planning, as well.</p>


2021 ◽  
Author(s):  
Kuo-Jen Chang ◽  
Ho-Hsuan Chang ◽  
Yu-Chung Hsieh ◽  
Mei-Jen Huang

&lt;p&gt;The Tsaoling Landslide is one of the largest landslides in Taiwan caused by the Chi-Chi Earthquake in 1999. More than 130 million cubic meters of rocks and debris blocked the Chingshui Stream channel and formed a landslide dammed lake. In July 2004, Typhoon Mindulle completely filled the dam by the debris of the landslides initially situated on the higher upstream regions. Since then, the river channel in the region of the filled dam lake and the seismogenic Tsaoling landslide accumulation began to cut down by fluvial erosion and transportation, eventually forming multiple river terraces and deep valley. In 2009, extreme heavy rain fall hit the area again by the typhoon Morakot, causing deformation of the eastern flank of the landslide area and major river channel migration. However, relative environmental changes and geomorphical evolution in Tsaoling landslide area have received less attention. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precise geoinformation. The Small unmanned aircraft system (sUAS) has been widely used in landslide monitoring and geomorphic change detection. On the basis of self-made drones, we have established a multi-temporal high-resolution DTMs, so as to access and to monitoring the post-landslide activities and topographic changes the Tsaoling area regularly and continuously. The result shows that, especially during the monsoon (spring rainy season) in June 2017, the small cliff of minor scarp on the main sliding surface has an important cliff line retreat. The maximum retreat distance exceeds 150 meters, and the volume of the landslide situated on the original sliding surface exceeds 1.5 million cubic meters. Over the next few years, the data set indicated that the topography of the area change continued. In this study, on the one hand, we are actively exploring new algorithms to minimize the relative error of the terrain in each period to accurately calculate the morphological changes in each period. On the other hand, the geomorphic changes indicate the landslide activity, and the characteristics of the river processes in the Tsaoling landslide area. Since 2016, through 8 multi-temporal UAS missions in Tsaoling area, the results indicate that the area is continues to deform and remain active. As a result, it is still worthwhile to monitor continuously.&lt;/p&gt;


2018 ◽  
Vol 18 (6) ◽  
pp. 1567-1582 ◽  
Author(s):  
Denis Feurer ◽  
Olivier Planchon ◽  
Mohamed Amine El Maaoui ◽  
Abir Ben Slimane ◽  
Mohamed Rached Boussema ◽  
...  

Abstract. Monitoring agricultural areas threatened by soil erosion often requires decimetre topographic information over areas of several square kilometres. Airborne lidar and remotely piloted aircraft system (RPAS) imagery have the ability to provide repeated decimetre-resolution and -accuracy digital elevation models (DEMs) covering these extents, which is unrealistic with ground surveys. However, various factors hamper the dissemination of these technologies in a wide range of situations, including local regulations for RPAS and the cost for airborne laser systems and medium-format RPAS imagery. The goal of this study is to investigate the ability of low-tech kite aerial photography to obtain DEMs with decimetre resolution and accuracy that permit 3-D descriptions of active gullying in cultivated areas of several square kilometres. To this end, we developed and assessed a two-step workflow. First, we used both heuristic experimental approaches in field and numerical simulations to determine the conditions that make a photogrammetric flight possible and effective over several square kilometres with a kite and a consumer-grade camera. Second, we mapped and characterised the entire gully system of a test catchment in 3-D. We showed numerically and experimentally that using a thin and light line for the kite is key for a complete 3-D coverage over several square kilometres. We thus obtained a decimetre-resolution DEM covering 3.18 km2 with a mean error and standard deviation of the error of +7 and 22 cm respectively, hence achieving decimetre accuracy. With this data set, we showed that high-resolution topographic data permit both the detection and characterisation of an entire gully system with a high level of detail and an overall accuracy of 74 % compared to an independent field survey. Kite aerial photography with simple but appropriate equipment is hence an alternative tool that has been proven to be valuable for surveying gullies with sub-metric details in a square-kilometre-scale catchment. This case study suggests that access to high-resolution topographic data on these scales can be given to the community, which may help facilitate a better understanding of gullying processes within a broader spectrum of conditions.


2016 ◽  
Vol 16 (11) ◽  
pp. 6977-6995 ◽  
Author(s):  
Jean-Pierre Chaboureau ◽  
Cyrille Flamant ◽  
Thibaut Dauhut ◽  
Cécile Kocha ◽  
Jean-Philippe Lafore ◽  
...  

Abstract. In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.


2016 ◽  
Author(s):  
J.-P. Chaboureau ◽  
C. Flamant ◽  
T. Dauhut ◽  
C. Kocha ◽  
J.-P. Lafore ◽  
...  

Abstract. In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection- permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large Aerosol Optical Depths (AODs) were forecast over the Sahara, a feature observed by some satellite retrievals but mislocated by others over the Sahel. The AOD intensity was correctly predicted by the highresolution models while being underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield to emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust extinction generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3406
Author(s):  
Jie Jiang ◽  
Yin Zou ◽  
Lidong Chen ◽  
Yujie Fang

Precise localization and pose estimation in indoor environments are commonly employed in a wide range of applications, including robotics, augmented reality, and navigation and positioning services. Such applications can be solved via visual-based localization using a pre-built 3D model. The increase in searching space associated with large scenes can be overcome by retrieving images in advance and subsequently estimating the pose. The majority of current deep learning-based image retrieval methods require labeled data, which increase data annotation costs and complicate the acquisition of data. In this paper, we propose an unsupervised hierarchical indoor localization framework that integrates an unsupervised network variational autoencoder (VAE) with a visual-based Structure-from-Motion (SfM) approach in order to extract global and local features. During the localization process, global features are applied for the image retrieval at the level of the scene map in order to obtain candidate images, and are subsequently used to estimate the pose from 2D-3D matches between query and candidate images. RGB images only are used as the input of the proposed localization system, which is both convenient and challenging. Experimental results reveal that the proposed method can localize images within 0.16 m and 4° in the 7-Scenes data sets and 32.8% within 5 m and 20° in the Baidu data set. Furthermore, our proposed method achieves a higher precision compared to advanced methods.


2010 ◽  
Vol 4 (1) ◽  
pp. 53-65 ◽  
Author(s):  
J. Abermann ◽  
A. Fischer ◽  
A. Lambrecht ◽  
T. Geist

Abstract. The potential of high-resolution repeat DEMs was investigated for glaciological applications including periglacial features (e.g. rock glaciers). It was shown that glacier boundaries can be delineated using airborne LIDAR-DEMs as a primary data source and that information on debris cover extent could be extracted using multi-temporal DEMs. Problems and limitations are discussed, and accuracies quantified. Absolute deviations of airborne laser scanning (ALS) derived glacier boundaries from ground-truthed ones were below 4 m for 80% of the ground-truthed values. Overall, we estimated an accuracy of +/−1.5% of the glacier area for glaciers larger than 1 km2. The errors in the case of smaller glaciers did not exceed +/−5% of the glacier area. The use of repeat DEMs in order to obtain information on the extent, characteristics and activity of rock glaciers was investigated and discussed based on examples.


2016 ◽  
Vol 13 (4) ◽  
pp. 961-973 ◽  
Author(s):  
W. Simonson ◽  
P. Ruiz-Benito ◽  
F. Valladares ◽  
D. Coomes

Abstract. Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha−1 yr−1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha−1 yr−1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha−1 yr−1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space deployment of lidar instruments in the near future could open the way for rolling out wide-scale forest carbon stock monitoring to inform management and governance responses to future environmental change.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 422 ◽  
Author(s):  
Alexander Rautenberg ◽  
Martin Graf ◽  
Norman Wildmann ◽  
Andreas Platis ◽  
Jens Bange

One of the biggest challenges in probing the atmospheric boundary layer with small unmanned aerial vehicles is the turbulent 3D wind vector measurement. Several approaches have been developed to estimate the wind vector without using multi-hole flow probes. This study compares commonly used wind speed and direction estimation algorithms with the direct 3D wind vector measurement using multi-hole probes. This was done using the data of a fully equipped system and by applying several algorithms to the same data set. To cover as many aspects as possible, a wide range of meteorological conditions and common flight patterns were considered in this comparison. The results from the five-hole probe measurements were compared to the pitot tube algorithm, which only requires a pitot-static tube and a standard inertial navigation system measuring aircraft attitude (Euler angles), while the position is measured with global navigation satellite systems. Even less complex is the so-called no-flow-sensor algorithm, which only requires a global navigation satellite system to estimate wind speed and wind direction. These algorithms require temporal averaging. Two averaging periods were applied in order to see the influence and show the limitations of each algorithm. For a window of 4 min, both simplifications work well, especially with the pitot-static tube measurement. When reducing the averaging period to 1 min and thereby increasing the temporal resolution, it becomes evident that only circular flight patterns with full racetracks inside the averaging window are applicable for the no-flow-sensor algorithm and that the additional flow information from the pitot-static tube improves precision significantly.


2019 ◽  
Author(s):  
Matthew Gard ◽  
Derrick Hasterok ◽  
Jacqueline Halpin

Abstract. Dissemination and collation of geochemical data are critical to promote rapid, creative and accurate research and place new results in an appropriate global context. To this end, we have assembled a global whole-rock geochemical database, with other associated sample information and properties, sourced from various existing databases and supplemented with numerous individual publications and corrections. Currently the database stands at 1,023,490 samples with varying amounts of associated information including major and trace element concentrations, isotopic ratios, and location data. The distribution both spatially and temporally is quite heterogeneous, however temporal distributions are enhanced over some previous database compilations, particularly in terms of ages older than ~ 1000 Ma. Also included are a wide range of computed geochemical indices, physical property estimates and naming schema on a major element normalized version of the geochemical data for quick reference. This compilation will be useful for geochemical studies requiring extensive data sets, in particular those wishing to investigate secular temporal trends. The addition of physical properties, estimated by sample chemistry, represents a unique contribution to otherwise similar geochemical databases. The data is published in .csv format for the purposes of simple distribution but exists in a format acceptable for database management systems (e.g. SQL). One can either manipulate this data using conventional analysis tools such as MATLAB®, Microsoft® Excel, or R, or upload to a relational database management system for easy querying and management of the data as unique keys already exist. This data set will continue to grow, and we encourage readers to contact us or other database compilations contained within about any data that is yet to be included. The data files described in this paper are available at https://doi.org/10.5281/zenodo.2592823 (Gard et al., 2019).


Sign in / Sign up

Export Citation Format

Share Document