scholarly journals Detecting cold pools from soundings during EUREC4A

Author(s):  
Ludovic Touzé-Peiffer ◽  
Raphaela Vogel ◽  
Nicolas Rochetin

<p>We develop a novel method to detect cold pools from atmospheric soundings over tropical oceans and apply it to sounding data from EUREC<sup>4</sup>A. The proposed method exploits the fact that the air in a cold pool is denser than the air above it. It leads us to define cold pool soundings as those for which the mixed-layer height is smaller than 400 m. We first test this criterion by verifying its consistency with surface temperature and precipitation in a realistic high-resolution simulation over the western tropical Atlantic. Applying to EUREC<sup>4</sup>A data, we then identify 7 % of EUREC<sup>4</sup>A dropsondes and radiosondes as cold pool soundings. In two selected case studies, we find that cold pool soundings coincide with mesoscale cloud arcs and temperature drops in the surface time series. Statistics for the entire campaign further characterize the signature of cold pools in temperature, humidity and wind profiles. In the presence of wind shear, we show in particular that the spreading of cold pools is favored downshear, suggesting downward momentum transport by unsaturated downdrafts. These results support the robustness of our simple method in different environmental conditions and illustrate the new insights it offers for the characterization of cold pools and their environment. </p>

2016 ◽  
Vol 144 (5) ◽  
pp. 1923-1934 ◽  
Author(s):  
M. Provod ◽  
J. H. Marsham ◽  
D. J. Parker ◽  
C. E. Birch

Cold pools are integral components of squall-line mesoscale convective systems and the West African monsoon, but are poorly represented in operational global models. Observations of 38 cold pools made at Niamey, Niger, during the 2006 African Monsoon Multidisciplinary Analysis (AMMA) campaign (1 June–30 September 2006), are used to generate a seasonal characterization of cold pool properties by quantifying related changes in surface meteorological variables. Cold pools were associated with temperature decreases of 2°–14°C, pressure increases of 0–8 hPa, and wind gusts of 3–22 m s−1. Comparison with published values of similar variables from the U.S. Great Plains showed comparable differences. The leading part of most cold pools had decreased water vapor mixing ratios compared to the environment, with moister air, likely related to precipitation, approximately 30 min behind the gust front. A novel diagnostic used to quantify how consistent observed cold pool temperatures are with saturated or unsaturated descent from midlevels [fractional evaporational energy deficit (FEED)] shows that early season cold pools are consistent with less saturated descents. Early season cold pools were relatively colder, windier, and wetter, consistent with drier midlevels, although this was only statistically significant for the change in moisture. Late season cold pools tended to decrease equivalent potential temperature from the pre–cold pool value, whereas earlier in the season changes were smaller, with more increases. The role of cold pools may therefore change through the season, with early season cold pools more able to feed subsequent convection.


2005 ◽  
Vol 133 (9) ◽  
pp. 2669-2691 ◽  
Author(s):  
Richard P. James ◽  
J. Michael Fritsch ◽  
Paul M. Markowski

Abstract The organizational mode of quasi-linear convective systems often falls within a spectrum of modes described by a line of discrete cells on one end (“cellular”) and an unbroken two-dimensional swath of ascent on the other (“slabular”). Convective events exhibiting distinctly cellular or slabular characteristics over the continental United States were compiled, and composite soundings of the respective inflow environments were constructed. The most notable difference between the environments of slabs and cells occurred in the wind profiles; lines organized as slabs existed in much stronger low-level line-relative inflow and stronger low-level shear. A compressible model with high resolution (Δx = 500 m) was used to investigate the effects of varying environmental conditions on the nature of the convective overturning. The numerical results show that highly cellular convective lines are favored when the environmental conditions and initiation procedure allow the convectively generated cold pools to remain separate from one another. The transition to a continuous along-line cold pool and gust front leads to the generation of a more “solid” line of convection, as dynamic pressure forcing above the downshear edge of the cold outflow creates a swath of quasi-two-dimensional ascent. Using both full-physics simulations and a simplified cold-pool model, it is demonstrated that the magnitude of the two-dimensional ascent in slabular convective systems is closely related to the integrated cold-pool strength. It is concluded that slabular organization tends to occur under conditions that favor the development of a strong, contiguous cold pool. The tendency to produce slabular convection is therefore enhanced by environmental conditions such as large CAPE, weak convective inhibition, strong along-line winds, and moderately strong cross-line wind shear.


2019 ◽  
Vol 76 (5) ◽  
pp. 1349-1372 ◽  
Author(s):  
Matthew Brown ◽  
Christopher J. Nowotarski

Abstract This paper reports on results of idealized numerical simulations testing the influence of low-level humidity, and thus lifting condensation level (LCL), on the morphology and evolution of low-level rotation in supercell thunderstorms. Previous studies have shown that the LCL can influence outflow buoyancy, which can in turn affect generation and stretching of near-surface vertical vorticity. A less explored hypothesis is tested: that the LCL affects the relative positioning of near-surface circulation and the overlying mesocyclone, thus influencing the dynamic lifting and intensification of near-surface vertical vorticity. To test this hypothesis, a set of three base-state thermodynamic profiles with varying LCLs are implemented and compared over a variety of low-level wind profiles. The thermodynamic properties of the simulations are sensitive to variations in the LCL, with higher LCLs contributing to more negatively buoyant cold pools. These outflow characteristics allow for a more forward propagation of near-surface circulation relative to the midlevel mesocyclone. When the mid- and low-level mesocyclones become aligned with appreciable near-surface circulation, favorable dynamic updraft forcing is able to stretch and intensify this rotation. The strength of the vertical vorticity generated ultimately depends on other interrelated factors, including the amount of near-surface circulation generated within the cold pool and the buoyancy of storm outflow. However, these simulations suggest that mesocyclone alignment with near-surface circulation is modulated by the ambient LCL, and is a necessary condition for the strengthening of near-surface vertical vorticity. This alignment is also sensitive to the low-level wind profile, meaning that the LCL most favorable for the formation of intense vorticity may change based on ambient low-level shear properties.


2021 ◽  
pp. 1-60
Author(s):  
Piyush Garg ◽  
Stephen W. Nesbitt ◽  
Timothy J. Lang ◽  
George Priftis

AbstractTropical convection regimes range from deep organized to shallow convective systems. Mesoscale processes such as cold pools within tropical convective systems can play a significant role in the evolution of convection over land and open ocean. Although cold pools are widely observed, their diurnal properties are not well understood over tropical oceans and land. The oceanic cold pool identification metric applied herein uses the gradient feature (GF) technique and is compared with diurnally-resolved buoy-identified thermal cold pools. This study provides a first-ever diurnal climatology of GF number, area, and attributed TRMM 3B42 precipitation using a space-borne scatterometer (RapidScat). Buoy data over the Pacific, Atlantic, and Indian Ocean have been used to validate and examine the RapidScat-identified diurnal cycle of GF number and precipitation. Buoy-observed cold pool duration, precipitation, temperature, and wind speed is analyzed to understand the in situ cold pool properties over tropical oceans. GF- and buoy-observed cold pool number and precipitation exhibits a similar bimodal diurnal variability with a morning and afternoon maxima, thus establishing confidence in using GF as a proxy to observe cold pools over tropical oceans. The morning peak is attributed to cold pools associated with deep moist convection while the afternoon peak is related to shallower clouds in relatively drier environments resulting in smaller cold pools over global tropical oceans.


RSC Advances ◽  
2021 ◽  
Vol 11 (22) ◽  
pp. 13245-13255
Author(s):  
Mehdi Davoodi ◽  
Fatemeh Davar ◽  
Mohammad R. Rezayat ◽  
Mohammad T. Jafari ◽  
Mehdi Bazarganipour ◽  
...  

New nanocomposite of zeolitic imidazolate framework-67@magnesium aluminate spinel (ZIF-67@MgAl2O4) has been fabricated by a simple method at room temperature with different weight ratios.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1807
Author(s):  
Rocío Guerle-Cavero ◽  
Blanca Lleal-Fontàs ◽  
Albert Balfagón-Costa

In 2023, new legislation will ban the use of animals in the cosmetic industry worldwide. This fact, together with ethical considerations concerning the use of animals or humans in scientific research, highlights the need to propose new alternatives for replacing their use. The aim of this study is to create a tri-layered chitosan membrane ionically crosslinked with sodium tripolyphosphate (TPP) in order to simulate the number of layers in human skin. The current article highlights the creation of a membrane where pores were induced by a novel method. Swelling index, pore creation, and mechanical property measurements revealed that the swelling index of chitosan membranes decreased and, their pore formation and elasticity increased with an increase in the Deacetylation Grade (DDA). Additionally, the results demonstrate that chitosan’s origin can influence the elastic modulus value and reproducibility, with higher values being obtained with seashell than snow crab or shrimp shells. Furthermore, the data show that the addition of each layer, until reaching three layers, increases the elastic modulus. Moreover, if layers are crosslinked, the elastic modulus increases to a much greater extent. The characterization of three kinds of chitosan membranes was performed to find the most suitable material for studying different human skin properties.


2013 ◽  
Vol 141 (4) ◽  
pp. 1241-1262 ◽  
Author(s):  
Rebecca D. Adams-Selin ◽  
Susan C. van den Heever ◽  
Richard H. Johnson

Abstract The effect of changes in microphysical cooling rates on bow echo development and longevity are examined through changes to graupel parameterization in the Advanced Research Weather Research and Forecasting Model (ARW-WRF). Multiple simulations are performed that test the sensitivity to different graupel size distributions as well as the complete removal of graupel. It is found that size distributions with larger and denser, but fewer, graupel hydrometeors result in a weaker cold pool due to reduced microphysical cooling rates. This yields weaker midlevel (3–6 km) buoyancy and pressure perturbations, a later onset of more elevated rear inflow, and a weaker convective updraft. The convective updraft is also slower to tilt rearward, and thus bowing occurs later. Graupel size distributions with more numerous, smaller, and lighter hydrometeors result in larger microphysical cooling rates, stronger cold pools, more intense midlevel buoyancy and pressure gradients, and earlier onset of surface-based rear inflow; these systems develop bowing segments earlier. A sensitivity test with fast-falling but small graupel hydrometeors revealed that small mean size and slow fall speed both contribute to the strong cooling rates. Simulations entirely without graupel are initially weaker, because of limited contributions from cooling by melting of the slowly falling snow. However, over the next hour increased rates of melting snow result in an increasingly more intense system with new bowing. Results of the study indicate that the development of a bow echo is highly sensitive to microphysical processes, which presents a challenge to the prediction of these severe weather phenomena.


1992 ◽  
Vol 25 (6) ◽  
pp. 125-139 ◽  
Author(s):  
J. Kappeler ◽  
W. Gujer

To predict the behaviour of biological wastewater treatment plants, the Activated Sludge Model No. 1 is often used. For the application of this model kinetic parameters and wastewater composition must be known. A simple method to estimate kinetic parameters of heterotrophic biomass and COD wastewater fractions is presented. With three different types of batch-tests these parameters and fractions can be determined by measuring oxygen respiration. Our measurements showed that the maximum specific growth rate µmax of heterotrophic biomass depends on temperature, reactor configuration and SRT. In typical wastewater treatment plants of Switzerland the amount of readily biodegradable substrate was generally small (about 9 % of the COD in primary effluent). The same method can also be used to determine kinetic parameters of nitrifying biomass.


Sign in / Sign up

Export Citation Format

Share Document