The Pretare-Piedilama rock block deposit: evidence of a further case of quaternary rock avalanche in Central Apennines, Italy 

Author(s):  
Maria Luisa Putignano ◽  
Emiliano Di Luzio ◽  
Luca Schilirò ◽  
Andrea Pietrosante ◽  
Salvatore Ivo Giano

<p>In the last two decades large clastic deposits in Central Apennines with specific morphological and sedimentological features have been interpreted as the result of Quaternary rock avalanche events (e.g., Di Luzio et al., 2004; Bianchi Fasani et al., 2014; Schilirò et al., 2019; Antonielli et al., 2020). The analysis of such deposits, that are located within intermontane basins and narrow valleys bounded by high mountain ridges, have improved the knowledge about this kind of massive rock slope failures, also clarifying their relationship with Deep-seated Gravitational Slope Deformations.</p><p>The present study then describes a multidisciplinary analysis carried out on a huge rock block deposit which crops out within the Pretare-Piedilama Valley, in the piedmont junction area of the Sibillini Mountain range (Central Italy), where Mesozoic basinal carbonates overthrust Miocene foredeep deposits.</p><p>Specifically, we performed sedimentological, stratigraphical and morphometric analyses on the clastic deposit; results support the interpretation of the event as a rock avalanche body. The accumulation area shows a T-like shape with a wide, E-W-oriented, proximal part and a N-S channelization in the central and lower sectors. The evidence suggests erosional events and tectonics as controlling factors on rock flow deposition. In this respect, the area was involved in the 2016 central Italy seismic sequence and was tectonically active during Quaternary times<strong> </strong>(Tortorici et al., 2009).</p><p>As regards on the deposit genesis, considering the geometric characteristics of a sub-rectangular detachment area located on the southern edge of the Sibillini Range, an original mechanism of rockslide failure involving about 8·10<sup>6</sup>m<sup>3</sup> of Early Jurassic limestone was inferred. Here, the post-failure geomorphic features behind the main scarp are considered for the evaluation of hazard conditions.</p><p>Finally, well-log analysis of the clastic sequence filling the Pretare-Piedilama Valley evidenced additional Quaternary landslide events occurred before the rock avalanche, thus testifying to a long history of large slope instabilities in the area controlling the landscape development.</p><p> </p><p><strong>REFERENCES</strong></p><p> </p><ul><li>Antonielli B., Della Seta M., Esposito C., Scarascia-Mugnozza G., Schilirò L., Spadi M., Tallini M. (2020). Quaternary rock avalanches in the Apennines: New data and interpretation of the huge clastic deposit of the L'Aquila Basin (central Italy). Geomorphology, 361, 107-194. doi:10.1016/j.geomorph.2020.107194.</li> <li>Bianchi Fasani G., Di Luzio E., Esposito C., Evans S.G., Scarascia-Mugnozza G. (2014). Quaternary, catastrophic rock avalanches in the Central Apennines (Italy): relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame. Geomorphology, 21, 22–42. doi:10.1016/j.geomorph.2013.12.027.</li> <li>Di Luzio E., Bianchi-Fasani G., Saroli M., Esposito C., Cavinato G.P., Scarascia-Mugnozza G. (2004). Massive rock slope failure in the central Apennines (Italy): the case of the Campo di Giove rock avalanche. Bullettin of Engineering Geology and the Environment 63, 1-12. doi:10.1007/s10064-003-0212-7.</li> <li>Schilirò L., Esposito C., De Blasio F.V., Scarascia-Mugnozza G. (2019). <strong>Sediment texture in rock avalanche deposits: insights from field and experimental observations. </strong>Landslides, 16, 1629-1643. doi: 10.1007/s10346-019-01210-x.</li> <li>Tortorici G., Romagnoli G., Grassi S. et al. (2019). Quaternary negative tectonic inversion along the Sibillini Mts. thrust zone: the Arquata del Tronto case history (Central Italy). Environ Earth Sci 78:<strong> </strong>37. doi:10.1007/s12665-018-8021-2.</li> </ul>

2003 ◽  
Vol 63 (1) ◽  
pp. 1-12 ◽  
Author(s):  
E. Di Luzio ◽  
G. Bianchi-Fasani ◽  
C. Esposito ◽  
M. Saroli ◽  
G. P. Cavinato ◽  
...  

2021 ◽  
Author(s):  
Janusz Wasowski ◽  
Maurice McSaveney ◽  
Luca Pisanu ◽  
Vincenzo Del Gaudio ◽  
Yan Li ◽  
...  

<p>Large earthquake-triggered landslides, in particular rock avalanches, can have catastrophic consequences. However, the recognition of slopes prone to such failures remains difficult, because slope-specific seismic response depends on many factors including local topography, landforms, structure and internal geology. We address these issues by exploring the case of a rock avalanche of >3 million m<sup>3</sup> triggered by the 2008 Mw7.9 Wenchuan earthquake in the Longmen Shan range, China. The failure, denominated Yangjia gully rock avalanche, occurred in Beichuan County (Sichuan Province), one of the areas that suffered the highest shaking intensity and death toll caused by co-seismic landsliding. Even though the Wenchuan earthquake produced tens of large (volume >1 million m<sup>3</sup>) rock avalanches, few studies so far have examined the pre-2008 history of the failed slope or reported on the stratigraphic record of mass-movement deposits exposed along local river courses. The presented case of the Yangjia gully rock avalanche shows the importance of such attempts as they provide information on the recurrence of large slope failures and their associated hazards. Our effort stems from recognition, on 2005 satellite imagery, of topography and morphology indicative of a large, apparently pre-historic slope failure and the associated breached landslide dam, both features closely resembling the forms generated in the catastrophic 2008 earthquake. The follow-up reconstruction recognizes an earlier landslide deposit exhumed from beneath the 2008 Yangjia gully rock avalanche by fluvial erosion since May 2008. We infer a seismic trigger also for the pre-2008 rock avalanche based on the following circumstantial evidence: i) the same source area (valley-facing, terminal portion of a flat-topped, elongated mountain ridge) located within one and a half kilometer of the seismically active Beichuan fault; ii) significant directional amplification of ground vibration, sub-parallel to the failed slope direction, detected via ambient noise measurements on the ridge adjacent to the source area of the 2008 rock avalanche and iii) common depositional and textural features of the two landslide deposits. Then, we show how, through consideration of the broader geomorphic and seismo-tectonic contexts, one can gain insight into the spatial and temporal recurrence of catastrophic slope failures  in Beichuan County and elsewhere in the Longmen Shan. This insight, combined with local-scale geologic and geomorphologic knowledge, may guide selection of suspect slopes for reconnaissance, wide-area ambient noise investigation aimed at discriminating their relative susceptibility to co-seismic catastrophic failures. We indicate the feasibility of such investigations through the example of this study, which uses 3-component velocimeters designed to register low amplitude ground vibration.</p>


2012 ◽  
Vol 12 (1) ◽  
pp. 241-254 ◽  
Author(s):  
L. Fischer ◽  
R. S. Purves ◽  
C. Huggel ◽  
J. Noetzli ◽  
W. Haeberli

Abstract. The ongoing debate about the effects of changes in the high-mountain cryosphere on rockfalls and rock avalanches suggests a need for more knowledge about characteristics and distribution of recent rock-slope instabilities. This paper investigates 56 sites with slope failures between 1900 and 2007 in the central European Alps with respect to their geological and topographical settings and zones of possible permafrost degradation and glacial recession. Analyses of the temporal distribution show an increase in frequency within the last decades. A large proportion of the slope failures (60%) originated from a relatively small area above 3000 m a.s.l. (i.e. 10% of the entire investigation area). This increased proportion of detachment zones above 3000 m a.s.l. is postulated to be a result of a combination of factors, namely a larger proportion of high slope angles, high periglacial weathering due to recent glacier retreat (almost half of the slope failures having occurred in areas with recent deglaciation), and widespread permafrost occurrence. The lithological setting appears to influence volume rather than frequency of a slope failure. However, our analyses show that not only the changes in cryosphere, but also other factors which remain constant over long periods play an important role in slope failures.


2020 ◽  
Vol 8 (4) ◽  
pp. 1021-1038
Author(s):  
Kristian Svennevig ◽  
Trine Dahl-Jensen ◽  
Marie Keiding ◽  
John Peter Merryman Boncori ◽  
Tine B. Larsen ◽  
...  

Abstract. The 17 June 2017 rock avalanche in the Karrat Fjord, West Greenland, caused a tsunami that flooded the nearby village of Nuugaatsiaq and killed four people. The disaster was entirely unexpected since no previous records of large rock slope failures were known in the region, and it highlighted the need for better knowledge of potentially hazardous rock slopes in remote Arctic regions. The aim of the paper is to explore our ability to detect and locate unstable rock slopes in remote Arctic regions with difficult access. We test this by examining the case of the 17 June 2017 Karrat rock avalanche. The workflow we apply is based on a multidisciplinary analysis of freely available data comprising seismological records, Sentinel-1 spaceborne synthetic-aperture radar (SAR) data, and Landsat and Sentinel-2 optical satellite imagery, ground-truthed with limited fieldwork. Using this workflow enables us to reconstruct a timeline of rock slope failures on the coastal slope here collectively termed the Karrat Landslide Complex. Our analyses show that at least three recent rock avalanches occurred in the Karrat Landslide Complex: Karrat 2009, Karrat 2016, and Karrat 2017. The latter is the source of the abovementioned tsunami, whereas the first two are described here in detail for the first time. All three are interpreted as having initiated as dip-slope failures. In addition to the recent rock avalanches, older rock avalanche deposits are observed, demonstrating older (Holocene) periods of activity. Furthermore, three larger unstable rock slopes that may pose a future hazard are described. A number of non-tectonic seismic events confined to the area are interpreted as recording rock slope failures. The structural setting of the Karrat Landslide Complex, namely dip slope, is probably the main conditioning factor for the past and present activity, and, based on the temporal distribution of events in the area, we speculate that the possible trigger for rock slope failures is permafrost degradation caused by climate warming. The results of the present work highlight the benefits of a multidisciplinary approach, based on freely available data, to studying unstable rock slopes in remote Arctic areas under difficult logistical field conditions and demonstrate the importance of identifying minor precursor events to identify areas of future hazard.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jan Klimeš ◽  
Jan Novotný ◽  
Alejo Cochacin Rapre ◽  
Jan Balek ◽  
Pavel Zahradníček ◽  
...  

Landslides or landslide-induced impact waves in high mountain lakes represent a high hazard for society, calling for realistic assessments of rock slope stability responsible for the process chain initiation. This task is often hampered by complex interplays of triggers, which effects on slope stability may be delayed by decades or even millennia, while historical records describing slope topography or landslide occurrences are usually shorter and incomplete. This article builds on rarely available detailed historical data describing the site of the 2002 rock avalanche in the Cordillera Blanca, Peru. It caused a dangerous impact wave in the Safuna Alta Lake resulting in a minor flood, but ongoing downstream development significantly increased the risk of a comparable event. Pre-2002 and post-2002 failure slope topography, 70 years long history of glaciation and landslide occurrences were combined with non-invasive field geological surveys and laboratory geotechnical analyses to characterize the distinct morphological parts of the failed slope with reliable engineering geological slope models. Slope stability was calculated for a series of environmental scenarios providing insights into the 2002 rock avalanche failure mechanism and dynamics as well as the role of glacier slope support for its stability. Results show that the rock slope stability is governed by discontinuous slip planes where rock bridges represent the most likely additional resisting forces. The effect of glacier support on the slope stability is limited under full-water saturation of the rocks and due to specific morpho-structural conditions. Importance of the long-term, progressive deterioration of the rock slope strength under paraglacial environment and repeated seismic shaking is illustrated by the fact that even the Little Ice Age maximum glacier extend only had minor positive effect on the pre-2002 rock avalanche slope stability. Despite of that, the slope remained without a major failure for decades or possibly even centuries. Its collapse in 2002 caused retrogressive movements of the adjacent slope, which remains highly unstable until now. Therefore the future safety of the lake would largely benefit from the implementation of a reliable slope movement monitoring system.


2006 ◽  
Vol 30 (3) ◽  
pp. 365-393 ◽  
Author(s):  
Kenneth Hewitt

The paper examines the role of rockslide-rock avalanches in mountain landscapes, and the landforms associated with them. While the landslides are extremely short-lived events, rock wall detachment scars and rock avalanche deposits can persist for long periods as influences on landscape development. Especially significant are rock avalanches with complex runout and emplacement related to interactions with rugged terrain or deformable substrates. Their characteristics greatly increase the scope of landscape disturbance. Hundreds of rock avalanches are now known, worldwide, that have formed crossvalley barriers interrupting mountain drainage systems. Many have done so for millennia or tens of millennia. They give rise to distinctive sediment assemblages, constructional and erosion landforms generated by other processes responding to the landslides and constrained by them. A landslide interruption epicycle of five phases is described, and related sediment assemblages. These provide the basis for defining a landslide interrupted valley landsystem. Its full significance is seen in mountain drainage basins affected by multiple landslide interruptions. These create naturally fragmented fluvial systems, in which a disturbance regime geomorphology is identified. Stream profiles, sediment delivery, and related landforms are kept in a chronic state of disequilibrium with respect to climatic and geotectonic controls, and drainage organization. The transHimalayan Upper Indus Basin provides an example, a large high mountain drainage system fragmented by more than 170 late Quaternary rock avalanches. In this case, as elsewhere, misidentification of rock avalanches led to neglect of their role in Quaternary histories. The nature and limitations of disturbance regime geomorphology are discussed, and broader implications for mountain landscapes.


Sign in / Sign up

Export Citation Format

Share Document