Disturbance regime landscapes: mountain drainage systems interrupted by large rockslides

2006 ◽  
Vol 30 (3) ◽  
pp. 365-393 ◽  
Author(s):  
Kenneth Hewitt

The paper examines the role of rockslide-rock avalanches in mountain landscapes, and the landforms associated with them. While the landslides are extremely short-lived events, rock wall detachment scars and rock avalanche deposits can persist for long periods as influences on landscape development. Especially significant are rock avalanches with complex runout and emplacement related to interactions with rugged terrain or deformable substrates. Their characteristics greatly increase the scope of landscape disturbance. Hundreds of rock avalanches are now known, worldwide, that have formed crossvalley barriers interrupting mountain drainage systems. Many have done so for millennia or tens of millennia. They give rise to distinctive sediment assemblages, constructional and erosion landforms generated by other processes responding to the landslides and constrained by them. A landslide interruption epicycle of five phases is described, and related sediment assemblages. These provide the basis for defining a landslide interrupted valley landsystem. Its full significance is seen in mountain drainage basins affected by multiple landslide interruptions. These create naturally fragmented fluvial systems, in which a disturbance regime geomorphology is identified. Stream profiles, sediment delivery, and related landforms are kept in a chronic state of disequilibrium with respect to climatic and geotectonic controls, and drainage organization. The transHimalayan Upper Indus Basin provides an example, a large high mountain drainage system fragmented by more than 170 late Quaternary rock avalanches. In this case, as elsewhere, misidentification of rock avalanches led to neglect of their role in Quaternary histories. The nature and limitations of disturbance regime geomorphology are discussed, and broader implications for mountain landscapes.

2021 ◽  
Author(s):  
Maria Luisa Putignano ◽  
Emiliano Di Luzio ◽  
Luca Schilirò ◽  
Andrea Pietrosante ◽  
Salvatore Ivo Giano

<p>In the last two decades large clastic deposits in Central Apennines with specific morphological and sedimentological features have been interpreted as the result of Quaternary rock avalanche events (e.g., Di Luzio et al., 2004; Bianchi Fasani et al., 2014; Schilirò et al., 2019; Antonielli et al., 2020). The analysis of such deposits, that are located within intermontane basins and narrow valleys bounded by high mountain ridges, have improved the knowledge about this kind of massive rock slope failures, also clarifying their relationship with Deep-seated Gravitational Slope Deformations.</p><p>The present study then describes a multidisciplinary analysis carried out on a huge rock block deposit which crops out within the Pretare-Piedilama Valley, in the piedmont junction area of the Sibillini Mountain range (Central Italy), where Mesozoic basinal carbonates overthrust Miocene foredeep deposits.</p><p>Specifically, we performed sedimentological, stratigraphical and morphometric analyses on the clastic deposit; results support the interpretation of the event as a rock avalanche body. The accumulation area shows a T-like shape with a wide, E-W-oriented, proximal part and a N-S channelization in the central and lower sectors. The evidence suggests erosional events and tectonics as controlling factors on rock flow deposition. In this respect, the area was involved in the 2016 central Italy seismic sequence and was tectonically active during Quaternary times<strong> </strong>(Tortorici et al., 2009).</p><p>As regards on the deposit genesis, considering the geometric characteristics of a sub-rectangular detachment area located on the southern edge of the Sibillini Range, an original mechanism of rockslide failure involving about 8·10<sup>6</sup>m<sup>3</sup> of Early Jurassic limestone was inferred. Here, the post-failure geomorphic features behind the main scarp are considered for the evaluation of hazard conditions.</p><p>Finally, well-log analysis of the clastic sequence filling the Pretare-Piedilama Valley evidenced additional Quaternary landslide events occurred before the rock avalanche, thus testifying to a long history of large slope instabilities in the area controlling the landscape development.</p><p> </p><p><strong>REFERENCES</strong></p><p> </p><ul><li>Antonielli B., Della Seta M., Esposito C., Scarascia-Mugnozza G., Schilirò L., Spadi M., Tallini M. (2020). Quaternary rock avalanches in the Apennines: New data and interpretation of the huge clastic deposit of the L'Aquila Basin (central Italy). Geomorphology, 361, 107-194. doi:10.1016/j.geomorph.2020.107194.</li> <li>Bianchi Fasani G., Di Luzio E., Esposito C., Evans S.G., Scarascia-Mugnozza G. (2014). Quaternary, catastrophic rock avalanches in the Central Apennines (Italy): relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame. Geomorphology, 21, 22–42. doi:10.1016/j.geomorph.2013.12.027.</li> <li>Di Luzio E., Bianchi-Fasani G., Saroli M., Esposito C., Cavinato G.P., Scarascia-Mugnozza G. (2004). Massive rock slope failure in the central Apennines (Italy): the case of the Campo di Giove rock avalanche. Bullettin of Engineering Geology and the Environment 63, 1-12. doi:10.1007/s10064-003-0212-7.</li> <li>Schilirò L., Esposito C., De Blasio F.V., Scarascia-Mugnozza G. (2019). <strong>Sediment texture in rock avalanche deposits: insights from field and experimental observations. </strong>Landslides, 16, 1629-1643. doi: 10.1007/s10346-019-01210-x.</li> <li>Tortorici G., Romagnoli G., Grassi S. et al. (2019). Quaternary negative tectonic inversion along the Sibillini Mts. thrust zone: the Arquata del Tronto case history (Central Italy). Environ Earth Sci 78:<strong> </strong>37. doi:10.1007/s12665-018-8021-2.</li> </ul>


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 514
Author(s):  
Leonardo Bayas-Jiménez ◽  
F. Javier Martínez-Solano ◽  
Pedro L. Iglesias-Rey ◽  
Daniel Mora-Melia ◽  
Vicente S. Fuertes-Miquel

A problem for drainage systems managers is the increase in extreme rain events that are increasing in various parts of the world. Their occurrence produces hydraulic overload in the drainage system and consequently floods. Adapting the existing infrastructure to be able to receive extreme rains without generating consequences for cities’ inhabitants has become a necessity. This research shows a new way to improve drainage systems with minimal investment costs, using for this purpose a novel methodology that considers the inclusion of hydraulic control elements in the network, the installation of storm tanks and the replacement of pipes. The presented methodology uses the Storm Water Management Model for the hydraulic analysis of the network and a modified Genetic Algorithm to optimize the network. In this algorithm, called the Pseudo-Genetic Algorithm, the coding of the chromosomes is integral and has been used in previous studies of hydraulic optimization. This work evaluates the cost of the required infrastructure and the damage caused by floods to find the optimal solution. The main conclusion of this study is that the inclusion of hydraulic controls can reduce the cost of network rehabilitation and decrease flood levels.


2021 ◽  
Vol 13 (13) ◽  
pp. 7189
Author(s):  
Beniamino Russo ◽  
Manuel Gómez Valentín ◽  
Jackson Tellez-Álvarez

Urban drainage networks should be designed and operated preferably under open channel flow conditions without flux return, backwater, or overflows. In the case of extreme storm events, urban pluvial flooding is generated by the excess of surface runoff that could not be conveyed by pressurized sewer pipes, due to its limited capacity or, many times, due to the poor efficiency of surface drainage systems to collect uncontrolled overland flow. Generally, the hydraulic design of sewer systems is addressed more for underground networks, neglecting the surface drainage system, although inadequate inlet spacings and locations can cause dangerous flooding with relevant socio-economic impacts and the interruption of critical services and urban activities. Several experimental and numerical studies carried out at the Technical University of Catalonia (UPC) and other research institutions demonstrated that the hydraulic efficiency of inlets can be very low under critical conditions (e.g., high circulating overland flow on steep areas). In these cases, the hydraulic efficiency of conventional grated inlets and continuous transverse elements can be around 10–20%. Their hydraulic capacity, expressed in terms of discharge coefficients, shows the same criticism with values quite far from those that are usually used in several project practice phases. The grate clogging phenomenon and more intense storm events produced by climate change could further reduce the inlets’ performance. In this context, in order to improve the flood urban resilience of our cities, the relevance of the hydraulic behavior of surface drainage systems is clear.


2021 ◽  
Author(s):  
Janusz Wasowski ◽  
Maurice McSaveney ◽  
Luca Pisanu ◽  
Vincenzo Del Gaudio ◽  
Yan Li ◽  
...  

<p>Large earthquake-triggered landslides, in particular rock avalanches, can have catastrophic consequences. However, the recognition of slopes prone to such failures remains difficult, because slope-specific seismic response depends on many factors including local topography, landforms, structure and internal geology. We address these issues by exploring the case of a rock avalanche of >3 million m<sup>3</sup> triggered by the 2008 Mw7.9 Wenchuan earthquake in the Longmen Shan range, China. The failure, denominated Yangjia gully rock avalanche, occurred in Beichuan County (Sichuan Province), one of the areas that suffered the highest shaking intensity and death toll caused by co-seismic landsliding. Even though the Wenchuan earthquake produced tens of large (volume >1 million m<sup>3</sup>) rock avalanches, few studies so far have examined the pre-2008 history of the failed slope or reported on the stratigraphic record of mass-movement deposits exposed along local river courses. The presented case of the Yangjia gully rock avalanche shows the importance of such attempts as they provide information on the recurrence of large slope failures and their associated hazards. Our effort stems from recognition, on 2005 satellite imagery, of topography and morphology indicative of a large, apparently pre-historic slope failure and the associated breached landslide dam, both features closely resembling the forms generated in the catastrophic 2008 earthquake. The follow-up reconstruction recognizes an earlier landslide deposit exhumed from beneath the 2008 Yangjia gully rock avalanche by fluvial erosion since May 2008. We infer a seismic trigger also for the pre-2008 rock avalanche based on the following circumstantial evidence: i) the same source area (valley-facing, terminal portion of a flat-topped, elongated mountain ridge) located within one and a half kilometer of the seismically active Beichuan fault; ii) significant directional amplification of ground vibration, sub-parallel to the failed slope direction, detected via ambient noise measurements on the ridge adjacent to the source area of the 2008 rock avalanche and iii) common depositional and textural features of the two landslide deposits. Then, we show how, through consideration of the broader geomorphic and seismo-tectonic contexts, one can gain insight into the spatial and temporal recurrence of catastrophic slope failures  in Beichuan County and elsewhere in the Longmen Shan. This insight, combined with local-scale geologic and geomorphologic knowledge, may guide selection of suspect slopes for reconnaissance, wide-area ambient noise investigation aimed at discriminating their relative susceptibility to co-seismic catastrophic failures. We indicate the feasibility of such investigations through the example of this study, which uses 3-component velocimeters designed to register low amplitude ground vibration.</p>


2008 ◽  
Vol 80 (3) ◽  
pp. 579-593 ◽  
Author(s):  
Dilce F. Rossetti ◽  
Ana M. Góes

Marajó Island shows an abundance of paleochannels easily mapped in its eastern portion, where vegetation consists mostly of savannas. SRTM data make possible to recognize paleochannels also in western Marajó, even considering the dense forest cover. A well preserved paleodrainage network from the adjacency of the town of Breves (southwestern Marajó Island) was investigated in this work combining remote sensing and sedimentological studies. The palimpsest drainage system consists of a large meander connected to narrower tributaries. Sedimentological studies revealed mostly sharp-based, fining upward sands for the channelized features, and interbedded muds and sands for floodplain areas. The sedimentary structures and facies successions are in perfect agreement with deposition in channelized and floodplain environments, as suggested by remote sensing mapping. The present study shows that this paleodrainage was abandoned during Late Pleistocene, slightly earlier than the Holocene paleochannel systems from the east part of the island. Integration of previous studies with the data available herein supports a tectonic origin, related to the opening of the Pará River along fault lineaments. This would explain the disappearance of large, north to northeastward migrating channel systems in southwestern Marajó Island, which were replaced by the much narrower, south to southeastward flowing modern channels.


Soil Research ◽  
2008 ◽  
Vol 46 (7) ◽  
pp. 542 ◽  
Author(s):  
J. A. Hanly ◽  
M. J. Hedley ◽  
D. J. Horne

Research was conducted in the Manawatu region, New Zealand, to investigate the ability of Papakai tephra to remove phosphorus (P) from dairy farm mole and pipe drainage waters. The capacity of this tephra to adsorb P was quantified in the laboratory using a series of column experiments and was further evaluated in a field study. In a column experiment, the P adsorption capabilities of 2 particle size factions (0.25–1, 1–2 mm) of Papakai tephra were compared with that of an Allophanic Soil (Patua soil) known to have high P adsorption properties. The experiment used a synthetic P influent solution (12 mg P/L) and a solution residence time in the columns of c. 35 min. By the end of the experiment, the 0.25–1 mm tephra removed an estimated 2.6 mg P/g tephra at an average P removal efficiency of 86%. The 1–2 mm tephra removed 1.6 mg P/g tephra at an average removal efficiency of 58%. In comparison, the Patua soil removed 3.1 mg P/g soil at a P removal efficiency of 86%. Although, the Patua soil was sieved to 1–2 mm, this size range consisted of aggregates of finer particles, which is likely to have contributed to this material having a higher P adsorbing capacity. A field study was established on a Pallic Soil, under grazed dairy pastures, to compare drainage water P concentrations from standard mole and pipe drainage systems (control) and drainage systems incorporating Papakai tephra. The 2 tephra treatments involved filling mole channels with 1–4 mm tephra (Mole-fill treatment) or filling the trench above intercepting drainage pipes with ‘as received’ tephra (Back-fill treatment). Over an entire winter drainage season, the quantity of total P (TP) lost from the control treatment drainage system was 0.30 kg P/ha. The average TP losses for the Mole-fill and the Back-fill treatments were 45% and 47% lower than the control treatment, respectively.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 933
Author(s):  
Harald G. Dill ◽  
Andrei Buzatu ◽  
Sorin-Ionut Balaban

A holistic-modular approach has been taken to study the evolution of three straight to low-sinuosity drainage systems (=SSS) in an uplifted basement block of the Central European Variscides. The development of the SSS is described by means of a quadripartite model. (1) The geological framework of the SSS: Forming the lithological and structural features in the bedrock as a result of different temperature, pressure and dynamic-metamorphic processes. (2) Prestage of SSS: Forming the paleo-landscape with a stable fluvial regime as a starting point for the SSS. (3) Proto-SSS: Transition into the metastable fluvial regime of the SSS. (4) Modern SSS: Operation of the metastable fluvial regime Tectonics plays a dual role. Late Paleozoic fold tectonic creates the basis for the studied SSS and has a guiding effect on the development of morphotectonic units during the Neogene and Quaternary. Late Cenozoic fault tectonics triggered the SSS to incise into the Paleozoic basement. The change in the bedrock lithology has an impact on the fluvial and colluvial sediments as well as their landforms. The latter reflects a conspicuous modification: straight drainage system ⇒ higher sinuosity and paired terraces ⇒ hillwash plains. Climate change has an indirect effect controlling via the bedrock the intensity of mechanical and chemical weathering. The impact on the development of the SSS can be assessed as follows: Tectonics >> climate ≅ bedrock lithology. The three parameters cause a facies zonation: (1) wide-and-shallow valley (Miocene), (2) wide-angle V-shaped valley (Plio-Pleistocene), (3) acute-angle V-shaped valley (Pleistocene), (4) V-shaped to U-shaped valleys (Pleistocene-Holocene). Numerical data relevant for the hydrographic studies of the SSS are determined in each reference area: (1) Quantification of fluvial and colluvial deposits along the drainage system, (2) slope angles, (3) degree of sinuosity as a function of river facies, (4) grain size distribution, (5) grain morphological categorization, (6) grain orientation (“situmetry”), (7) channel density, (8) channel/floodplain ratios. Thermodynamic computations (Eh, pH, concentration of solubles) are made to constrain the paleoclimatic regime during formation of the SSS. The current model of the SSS is restricted in its application to the basement of the Variscan-Type orogens, to an intermediate crustal maturity state.


2017 ◽  
Vol 43 (2) ◽  
pp. 548 ◽  
Author(s):  
Th. Anagnostoudi ◽  
S. Papadopoulou ◽  
D. Ktenas ◽  
E. Gkadri ◽  
I. Pyliotis ◽  
...  

Olvios, Rethis and Inachos Rivers are multistory drainage systems that occur in Northern Peloponnesus, and at the present day they have and a reversed, North to South, flow element. Dervenios, Skoupeikos and Fonissa Rivers are the misfit streams of Olvios and revealed as juvenile streams and discharge to the Corinth gulf. Agiorgitikos River is the misfit stream of Rethis River and Seliandros River is the juvenile stream. Asopos, Nemeas and Rachiani Rives are the misfit streams of Inachos River and they also discharge to the Corinth gulf. Asopos River characterized as re-established stream. Physical factors such as tectonic regime (active and inactive faults), lithology, erosion and distance from the source influenced the three drainage systems evolution and could be influence them also in the future. The increase of human activities both in their southern parts and in the distal parts close to the coast could be change the physical evolution of the studied drainages, producing a new wind gap in the coastal area and a lake or a lagoon backwards of the coastal area, destroying villages and towns.


2012 ◽  
Vol 452-453 ◽  
pp. 538-542 ◽  
Author(s):  
Abdelkader Djehiche ◽  
Rekia Amieur ◽  
Mustafa Gafsi

This paper presents an experimental study of a homogenous earth dam. The work is focused to the search of solutions of problems encountered in the earth dams after their construction. One of the major problems is the choice and design of systems of drainage. The effective drainage system to prevent harmful accumulations of excess water is one of the most important roles of dams. Efficient drainage systems can improve the safety of earth dams. The paper presented herein reports the results obtained from the experimental study. Empiric relations have been obtained which can be help in the control of the flow rate in the chimney drain of the earth dams on pervious foundation, which can increase safety earth dams


2018 ◽  
Vol 147 ◽  
pp. 03008
Author(s):  
Afifah Muhsinatu Mardiah ◽  
Cherish Nurul Ainy ◽  
Mohammad Bagus ◽  
Dhemi Harlan

Institut Teknologi Bandung (ITB), Ganesha Campus, Indonesia, has an area of 28.86 hectares. The campus is located in Bandung. Starting from 2012, new buildings were constructed within the area, reducing the area of permeable surface significantly. In the past few years, there were several excess run off incidents in the campus. The insufficient area of permeable surface as well as the inadequate capacity of the drainage system contributes to the excess surface run off. The drainage system has only two outlets. Moreover, in some areas, the drainage systems are disconnected. Thus, most the surface run off are stored within the drainage system. The purpose of this study is to evaluate the effectiveness of infiltration wells for reducing the local excess run off in ITB. Precipitation data and drained service area are used to estimate the design discharge from each building in ITB. In order to avoid the excess surface run off of certain locations in ITB, then the infiltration wells are proposed to balance the area of impermeable surface. The effectiveness of the infiltration wells are evaluated by assessing their number to their contribution in reducing the excess surface runs off.


Sign in / Sign up

Export Citation Format

Share Document