Investigating the Effect of Tropical Cyclones on Atmospheric Chemistry in the Upper Troposphere

Author(s):  
Lakhima Chutia ◽  
Pradip Bhuyan ◽  
Binita Pathak ◽  
Chandrakala Bharali

<p>Tropical cyclones (TCs) containing widespread and intense convection, play a dominant role in stratosphere-troposphere exchange (STE) processes in the upper troposphere and lower stratosphere (UTLS) region. Here we examine the variation of meteorological and chemical fields associated with two different pre-monsoon tropical cyclones: MORA and FANI, by combining satellite-based observations from AIRS (The Atmospheric Infrared Sounder ) and different model reanalysis datasets from ERA5 (fifth generation of ECMWF atmospheric reanalyses), CAMS (Copernicus Atmosphere Monitoring Service), MERRA-2 (The Modern-Era Retrospective analysis for Research and Applications, Version 2), and NCEP (National Centers for Environmental Prediction). An increase in the upper-tropospheric ozone (O<sub>3</sub>) by 15– 30 ppbv is observed over the Bay of Bengal during the high phase of MORA cyclone. Intrusion of O<sub>3</sub> from lower stratosphere to upper troposphere is clearly observed from 50 to 300 hPa during the cyclonic period, contributing enhancement in the upper tropospheric O<sub>3</sub>. There are no such indication of enhanced O<sub>3</sub> values before and after the dissipation of MORA cyclone. General behavior of intrusion associated with severe MORA cyclone is well captured by all the models and satellite, however some differences are seen in the intensity and structure of the STE events. Strong updrafts and downdrafts present in the vicinity of tropopause during TC passage weakened the stability of tropopause layer. The low tropopause temperature with enhanced potential vorticity (PV) feature extended vertically downward from lower stratosphere to troposphere confirms the stratosphere to tropospheric intrusion during the cyclonic period. Concurrently, low relative humidity (RH) along with negative RH-O<sub>3</sub> correlation during the overhead cyclone further supports the intrusion. Contrarily, satellite and model results revealed no significant variation in O<sub>3</sub> mixing ratio in the lower stratosphere down to the tropopause level during the high phase of extremely severe FANI cyclone. Strong convective activity during the passage of FANI confirms the upward propagation of CO rich (O<sub>3</sub> poor) air masses from surface to the mid/upper troposphere. The air masses are then trapped by anticyclone around the tropopause levels. This study clearly reveals that tropical cyclones play major role in exchanges of mass and energy between the stratosphere and troposphere (and vice versa) besides being general weather phenomena.</p>

2016 ◽  
Author(s):  
M. Venkat Ratnam ◽  
S. Ravindra Babu ◽  
S. S. Das ◽  
Ghouse Basha ◽  
B. V. Krishnamurthy ◽  
...  

Abstract. Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere-troposphere exchange (STE) process in the Upper Troposphere and Lower Stratosphere (UTLS) region. In the present study, the impact of cyclones that occurred over the North Indian Ocean during 2007–2013 on the STE process is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS) Radio Occultation (RO) measurements and ozone and water vapor concentrations in UTLS region are obtained from Aura-Microwave Limb Sounder (MLS) satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km from the centre of cyclone. In our earlier study we have observed decrease (increase) in the tropopause altitude (temperature) up to 0.6 km (3 K) and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL) thickness of 3 km within the 500 km from the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from cyclone centre whereas the enhancement in the water vapor in the lower stratosphere is more significant on south-east side extending from 500–1000 km away from the cyclone centre. We estimated the cross-tropopause mass flux for different intensities of cyclones and found that the mean flux from stratosphere to troposphere for cyclonic stroms is 0.05 ± 0.29 × 10−3 kg m−2 and for very severe cyclonic stroms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed in the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget and consequentially the STE in the UTLS region.


2019 ◽  
Vol 19 (6) ◽  
pp. 3589-3620 ◽  
Author(s):  
Ryan S. Williams ◽  
Michaela I. Hegglin ◽  
Brian J. Kerridge ◽  
Patrick Jöckel ◽  
Barry G. Latter ◽  
...  

Abstract. The stratospheric contribution to tropospheric ozone (O3) has been a subject of much debate in recent decades but is known to have an important influence. Recent improvements in diagnostic and modelling tools provide new evidence that the stratosphere has a much larger influence than previously thought. This study aims to characterise the seasonal and geographical distribution of tropospheric ozone, its variability, and its changes and provide quantification of the stratospheric influence on these measures. To this end, we evaluate hindcast specified-dynamics chemistry–climate model (CCM) simulations from the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model and the Canadian Middle Atmosphere Model (CMAM), as contributed to the International Global Atmospheric Chemistry – Stratosphere-troposphere Processes And their Role in Climate (IGAC-SPARC) (IGAC–SPARC) Chemistry Climate Model Initiative (CCMI) activity, together with satellite observations from the Ozone Monitoring Instrument (OMI) and ozone-sonde profile measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) over a period of concurrent data availability (2005–2010). An overall positive, seasonally dependent bias in 1000–450 hPa (∼0–5.5 km) sub-column ozone is found for EMAC, ranging from 2 to 8 Dobson units (DU), whereas CMAM is found to be in closer agreement with the observations, although with substantial seasonal and regional variation in the sign and magnitude of the bias (∼±4 DU). Although the application of OMI averaging kernels (AKs) improves agreement with model estimates from both EMAC and CMAM as expected, comparisons with ozone-sondes indicate a positive ozone bias in the lower stratosphere in CMAM, together with a negative bias in the troposphere resulting from a likely underestimation of photochemical ozone production. This has ramifications for diagnosing the level of model–measurement agreement. Model variability is found to be more similar in magnitude to that implied from ozone-sondes in comparison with OMI, which has significantly larger variability. Noting the overall consistency of the CCMs, the influence of the model chemistry schemes and internal dynamics is discussed in relation to the inter-model differences found. In particular, it is inferred that CMAM simulates a faster and shallower Brewer–Dobson circulation (BDC) compared to both EMAC and observational estimates, which has implications for the distribution and magnitude of the downward flux of stratospheric ozone over the most recent climatological period (1980–2010). Nonetheless, it is shown that the stratospheric influence on tropospheric ozone is significant and is estimated to exceed 50 % in the wintertime extratropics, even in the lower troposphere. Finally, long-term changes in the CCM ozone tracers are calculated for different seasons. An overall statistically significant increase in tropospheric ozone is found across much of the world but particularly in the Northern Hemisphere and in the middle to upper troposphere, where the increase is on the order of 4–6 ppbv (5 %–10 %) between 1980–1989 and 2001–2010. Our model study implies that attribution from stratosphere–troposphere exchange (STE) to such ozone changes ranges from 25 % to 30 % at the surface to as much as 50 %–80 % in the upper troposphere–lower stratosphere (UTLS) across some regions of the world, including western Eurasia, eastern North America, the South Pacific and the southern Indian Ocean. These findings highlight the importance of a well-resolved stratosphere in simulations of tropospheric ozone and its implications for the radiative forcing, air quality and oxidation capacity of the troposphere.


2019 ◽  
Vol 19 (10) ◽  
pp. 7073-7103 ◽  
Author(s):  
Yoichi Inai ◽  
Ryo Fujita ◽  
Toshinobu Machida ◽  
Hidekazu Matsueda ◽  
Yousuke Sawa ◽  
...  

Abstract. To investigate the seasonal characteristics of trace gas distributions in the extratropical upper troposphere and lower stratosphere (ExUTLS) as well as stratosphere–troposphere exchange processes, origin fractions of air masses originating in the stratosphere, tropical troposphere, midlatitude lower troposphere (LT), and high-latitude LT in the ExUTLS are estimated using 10-year backward trajectories calculated with European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data as the meteorological input. Time series of trace gases obtained from ground-based and airborne observations are incorporated into the trajectories, thus reconstructing spatiotemporal distributions of trace gases in the ExUTLS. The reconstructed tracer distributions are analyzed with the origin fractions and the stratospheric age of air (AoA) estimated using the backward trajectories. The reconstructed distributions of SF6 and CO2 in the ExUTLS are linearly correlated with those of AoA because of their chemically passive behavior and quasi-stable increasing trends in the troposphere. Distributions of CH4, N2O, and CO are controlled primarily by chemical decay along the transport path from the source region via the stratosphere and subsequent mixing of such stratospheric air masses with tropospheric air masses in the ExUTLS.


2017 ◽  
Vol 17 (11) ◽  
pp. 6743-6757 ◽  
Author(s):  
Narendra Ojha ◽  
Andrea Pozzer ◽  
Dimitris Akritidis ◽  
Jos Lelieveld

Abstract. Layers with strongly enhanced ozone concentrations in the middle–upper troposphere, referred to as secondary ozone peaks (SOPs), have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC) to (i) investigate the processes causing SOPs, (ii) explore both their frequency of occurrence and seasonality, and (iii) assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV) and a stratospheric ozone tracer (O3s) in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by stratosphere-to-troposphere transport (STT) of ozone. The spatial distribution of O3s further shows that such effects are in general most pronounced in the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle East, as well as in nearby regions in Afghanistan and Pakistan, and are rapidly (within 2–3 days) transported to the Himalayas. Analysis of a 15-year (2000–2014) EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May), while no intense SOP events are found during the July–October period. The SOPs are estimated to enhance the tropospheric column ozone (TCO) over the central Himalayas by up to 21 %.


2008 ◽  
Vol 8 (3) ◽  
pp. 757-764 ◽  
Author(s):  
M. Park ◽  
W. J. Randel ◽  
L. K. Emmons ◽  
P. F. Bernath ◽  
K. A. Walker ◽  
...  

Abstract. Evidence of chemical isolation in the Asian monsoon anticyclone is presented using chemical constituents obtained from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer instrument during summer (June–August) of 2004–2006. Carbon monoxide (CO) shows a broad maximum over the monsoon anticyclone region in the upper troposphere and lower stratosphere (UTLS); these enhanced CO values are associated with air pollution transported upward by convection, and confined by the strong anticyclonic circulation. Profiles inside the anticyclone show enhancement of tropospheric tracers CO, HCN, C2H6, and C2H2 between ~12 to 20 km, with maxima near 13–15 km. Strong correlations are observed among constituents, consistent with sources from near-surface pollution and biomass burning. Stratospheric tracers (O3, HNO3 and HCl) exhibit decreased values inside the anticyclone between ~12–20 km. These observations are further evidence of transport of lower tropospheric air into the UTLS region, and isolation of air within the anticyclone. The relative enhancements of tropospheric species inside the anticyclone are closely related to the photochemical lifetime of the species, with strongest enhancement for shorter lived species. Vertical profiles of the ratio of C2H2/CO (used to measure the relative age of air) suggest relatively rapid transport of fresh emissions up to the tropopause level inside the anticyclone.


Author(s):  
Thumeka Mkololo ◽  
Nkanyiso Mbatha ◽  
Sivakumar Venkataraman ◽  
Nelson Begue ◽  
Gerrie Coetzee ◽  
...  

This study aims to investigate the Stratosphere-Troposphere Exchange (STE) events and ozone trends over Irene (25.5°S, 28.1°E). Twelve years of ozonesondes data (2000–2007, 2012–2015) from Irene station operating in the framework of the Southern Hemisphere Additional Ozonesodes (SHADOZ) was used to study the troposphere (0–16 km) and stratosphere (17– 28 km) ozone (O3) vertical profiles. Ozone profiles were grouped into three categories (2000–2003, 2004–2007 and 2012–2015) and average composites were calculated for each category. Fifteen O3 enhancement events were identified over the study period. These events were observed in all seasons (one event in summer, four events in autumn, five events in winter and five events in spring), however, they predominantly occur in winter and spring. The STE events presented here are observed to be influenced by the Southern Hemisphere polar vortex. During the STE events, the advected potential vorticity maps assimilated using Modélisation Isentrope du transport Méso–échelle de l’Ozone Stratosphérique par Advection (MIMOSA) model for the 350 K (~12–13 km) isentropic level indicated a transport of high latitude air masses which seems to be responsible for the reduction of the O3 mole fractions at the lower stratosphere over Irene which takes place at the same time with the enhancement of ozone in the upper troposphere. In general, the stratosphere is dominated by higher Modern Retrospective Analysis for Research Application (MERRA-2) potential vorticity (PV) values compared to the troposphere. However, during the STE events, higher PV values from the stratosphere were observed to intrude the troposphere. Ozone decline was observed from 12 km to 24 km with highest decline occurring from 14 km to 18 km. An average decrease of 6.0 and 9.1% was calculated from 12 to 24 km in 2004–2007 and 2012–2015 respectively. The observed decline occurred in the upper troposphere and lower stratosphere with winter and spring showing more decline compared with summer and autumn.


2019 ◽  
Vol 19 (4) ◽  
pp. 2497-2526 ◽  
Author(s):  
Charlotta Högberg ◽  
Stefan Lossow ◽  
Farahnaz Khosrawi ◽  
Ralf Bauer ◽  
Kaley A. Walker ◽  
...  

Abstract. Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), we evaluated five data sets of δD(H2O) obtained from observations by Odin/SMR (Sub-Millimetre Radiometer), Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding), and SCISAT/ACE-FTS (Science Satellite/Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) using profile-to-profile and climatological comparisons. These comparisons aimed to provide a comprehensive overview of typical uncertainties in the observational database that could be considered in the future in observational and modelling studies. Our primary focus is on stratospheric altitudes, but results for the upper troposphere and lower mesosphere are also shown. There are clear quantitative differences in the measurements of the isotopic ratio, mainly with regard to comparisons between the SMR data set and both the MIPAS and ACE-FTS data sets. In the lower stratosphere, the SMR data set shows a higher depletion in δD than the MIPAS and ACE-FTS data sets. The differences maximise close to 50 hPa and exceed 200 ‰. With increasing altitude, the biases decrease. Above 4 hPa, the SMR data set shows a lower δD depletion than the MIPAS data sets, occasionally exceeding 100 ‰. Overall, the δD biases of the SMR data set are driven by HDO biases in the lower stratosphere and by H2O biases in the upper stratosphere and lower mesosphere. In between, in the middle stratosphere, the biases in δD are the result of deviations in both HDO and H2O. These biases are attributed to issues with the calibration, in particular in terms of the sideband filtering, and uncertainties in spectroscopic parameters. The MIPAS and ACE-FTS data sets agree rather well between about 100 and 10 hPa. The MIPAS data sets show less depletion below approximately 15 hPa (up to about 30 ‰), due to differences in both HDO and H2O. Higher up this behaviour is reversed, and towards the upper stratosphere the biases increase. This is driven by increasing biases in H2O, and on occasion the differences in δD exceed 80 ‰. Below 100 hPa, the differences between the MIPAS and ACE-FTS data sets are even larger. In the climatological comparisons, the MIPAS data sets continue to show less depletion in δD than the ACE-FTS data sets below 15 hPa during all seasons, with some variations in magnitude. The differences between the MIPAS and ACE-FTS data have multiple causes, such as differences in the temporal and spatial sampling (except for the profile-to-profile comparisons), cloud influence, vertical resolution, and the microwindows and spectroscopic database chosen. Differences between data sets from the same instrument are typically small in the stratosphere. Overall, if the data sets are considered together, the differences in δD among them in key areas of scientific interest (e.g. tropical and polar lower stratosphere, lower mesosphere, and upper troposphere) are too large to draw robust conclusions on atmospheric processes affecting the water vapour budget and distribution, e.g. the relative importance of different mechanisms transporting water vapour into the stratosphere.


2016 ◽  
Author(s):  
R. J. Pope ◽  
N. A. D. Richards ◽  
M. P. Chipperfield ◽  
D. P. Moore ◽  
S. A. Monks ◽  
...  

Abstract. Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere – lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board ENVISAT from the Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology and the Department of Physics and Astronomy, University of Leicester (UoL). Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), insitu aircraft data and the TOMCAT 3-D chemical transport model. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to > 200 pptv at 150 hPa) and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50–100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences. TOMCAT-MIPAS comparisons show that the model is both positively (UoL) and negatively (IMK) biased against the satellite products. These results show that satellite PAN observations are able to detect realistic spatial variations in PAN in the UTLS, but further work is needed to resolve differences in existing retrievals to allow quantitative use of the products.


Sign in / Sign up

Export Citation Format

Share Document