Ancient warming pushed wetlands across biogeochemical tipping points

Author(s):  
Richard Pancost ◽  
David Naafs ◽  
Gordon Inglis ◽  
Vittoria Lauretano

<p>Ancient peat deposits provide valuable and complementary insight into the biogeochemical response of wetlands to climate perturbations, including potential tipping points in such systems. The combination of temperature (GDGTs) and hydrology (leaf wax hydrogen isotopic compositions) proxies with qualitative proxies for methanogenesis (archaeal lipid abundances) and methanotrophy (bacterial lipid carbon isotopic compositions) has revealed dramatic perturbations to the carbon cycle during transient warming events, including the Palaeocene Eocene Thermal Maximum.  Bacterially-derived hopanes in at least two PETM-spanning lignite sequences record negative carbon isotope excursions of near-unprecedented magnitude in response to rapid global warming.  The warming – either directly or indirectly – clearly caused a fundamental reorganisation of the carbon cycle in those ancient wetlands. Intriguingly however, these excursions persist for a far shorter duration than the PETM warming. Similarly, hopane δ<sup>13</sup>C values in lignites of the Early Eocene Climate Optimum, the warmth of which was reached more gradually, are similar to those of today. This suggests that these unusually isoptopically light hopanoids represent a transient disruption to the methane cycle associated with a climate perturbation rather than an equilibrium response to warmer temperatures.  Such an interpretation is consistent with Deglacial and Holocene peat-derived records, in which hopane δ<sup>13</sup>C values exhibit large responses to transient drying events and modest responses to longer-term change. Such findings could have implications for future climate change feedbacks, with the wetland methane cycle being particularly sensitive to the rate of climatic change.</p>

2018 ◽  
Vol 9 (2) ◽  
pp. 507-523 ◽  
Author(s):  
Steven J. Lade ◽  
Jonathan F. Donges ◽  
Ingo Fetzer ◽  
John M. Anderies ◽  
Christian Beer ◽  
...  

Abstract. Changes to climate–carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate–carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate–carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate–carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate–carbon feedback; and concentration–carbon feedbacks may be more sensitive to future climate change than climate–carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.


2007 ◽  
Vol 4 (3) ◽  
pp. 1877-1921 ◽  
Author(s):  
B. Schneider ◽  
L. Bopp ◽  
M. Gehlen ◽  
J. Segschneider ◽  
T. L. Frölicher ◽  
...  

Abstract. This study compares spatial and temporal variability in net primary productivity (PP) and particulate organic carbon (POC) export production (EP) from three different coupled climate carbon cycle models (IPSL, MPIM, NCAR) with observation-based estimates derived from satellite measurements of ocean colour and inverse modelling. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006)\\nocite{Behrenfeld06} with stronger stratification (higher SSTs) leading to negative PP anomalies and vice versa. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for global PP anomalies. Two of the models also reproduce the inverse relationship between stratification (SST) and PP, especially in the equatorial Pacific. With the help of the model results we are able to explain the chain of cause and effect leading from stratification (SST) through nutrient concentrations to PP and finally to EP. There are significant uncertainties in observational PP and especially EP. Our finding of a good agreement between independent estimates from coupled models and satellite observations provides increased confidence that such models can be used as a first basis to estimate the impact of future climate change on marine productivity and carbon export.


2012 ◽  
Vol 8 (3) ◽  
pp. 2075-2110 ◽  
Author(s):  
G. Paris ◽  
Y. Donnadieu ◽  
V. Beaumont ◽  
F. Fluteau ◽  
Y. Goddéris

Abstract. The Triassic-Jurassic boundary (TJB) is associated with one of the five largest mass extinctions of the Phanerozoic. A deep carbon cycle perturbation and a carbonate production crisis are observed during the late Triassic. The Central Atlantic Magmatic Province (CAMP), one of the most important large igneous provinces of the Phanerozoic, emplaced at the TJB. To understand the carbon cycle perturbations observed at the TJB, we investigate the consequences of CO2 degassing associated to the CAMP emplacement on atmospheric and oceanic carbon cycle. The CO2 input within the atmosphere due to volcanism has been modeled using a global biogeochemical cycle box model (COMBINE) coupled with a climate model (FOAM). Weathering fluxes and CO2 equilibrium are constrained by the Rhaetian paleogeography and different scenarios of the CAMP emplacement are modeled. The study focuses (1) on the geological record and the carbonate productions crisis and (2) on the sedimentary carbon isotope record. For point (1), comparison of different modeling scenarios shows that a Gaussian CO2 emission distribution over the duration of the main activity phase of the CAMP fails in reproducing any of the geological observations, mainly the carbonate production crisis observed in the late Rhaetian sediments. Contrastingly, intense degassing peaks lead to successive decrease in carbonate production as observed in the geological record. For point (2), the perturbations of carbon cycle due to the degassing of CO2 with a mantellic carbon isotopic composition of −5‰ do not reproduce the intensity of the observed carbon isotope excursions. This was achieved in our model by assuming a mantellic carbon isotopic composition of −20‰. Even if this hypothesis requires further investigations, such low values may be associated to degassing of carbon from pools of light isotopic carbon located at the transition zone (Cartigny, 2010), possibly linked to setting of large igneous provinces (LIP's). Breakdown of biological primary productivity can also partially account for the sedimentary carbon isotope excursions and for the observed increase of atmospheric pCO2.


2012 ◽  
Vol 12 (4) ◽  
pp. 9079-9124
Author(s):  
P. Q. Fu ◽  
K. Kawamura ◽  
J. Chen ◽  
J. Li ◽  
Y. L. Sun ◽  
...  

Abstract. Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and stable carbon isotope ratios (δ13C) of total carbon (TC) have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006) field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA) tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs). In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3) were double those in late June (926 ± 574 ng m−3). All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, 403 ng m−3) was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC), we estimate that an average of 24% (up to 64%) of the OC in the Mt. Tai aerosols was due to biomass burning in early June, followed by the contribution of isoprene SOC (mean 4.3%). In contrast, isoprene SOC was the main contributor (6.6%) to OC, and only 3.0% of the OC was due to biomass burning in late June. In early June, δ13C of TC (−26.6‰ to −23.2‰, mean −25.0‰) were lower than those (−23.9‰ to −21.9‰, mean −22.9‰) in late June. In addition, a strong anti-correlation was found between levoglucosan and δ13C values. This study demonstrates that crop-residue burning activities can significantly enhance the organic aerosol loading and alter the organic molecular compositions and stable carbon isotopic compositions of aerosol particles in the troposphere over North China Plain.


2011 ◽  
Vol 2 (1) ◽  
pp. 133-159
Author(s):  
J. F. Tjiputra ◽  
O. H. Otterå

Abstract. Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller but more frequent eruptions, such as Pinatubo, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before return to the warming trend. Therefore, the climate change is approximately delayed by several decades and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45% increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by reduced CO2 partial pressure gradient between ocean and atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling only leads to a reduction of 46 ppmv atmospheric CO2 concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century. With respect to sulphur injection geoengineering method, our study suggest that small scale but frequent mitigation is more efficient than the opposite. Moreover, the longer we delay, the more difficult it would be to counteract climate change.


2016 ◽  
Vol 7 (4) ◽  
pp. 917-935 ◽  
Author(s):  
Doug McNeall ◽  
Jonny Williams ◽  
Ben Booth ◽  
Richard Betts ◽  
Peter Challenor ◽  
...  

Abstract. Uncertainty in the simulation of the carbon cycle contributes significantly to uncertainty in the projections of future climate change. We use observations of forest fraction to constrain carbon cycle and land surface input parameters of the global climate model FAMOUS, in the presence of an uncertain structural error. Using an ensemble of climate model runs to build a computationally cheap statistical proxy (emulator) of the climate model, we use history matching to rule out input parameter settings where the corresponding climate model output is judged sufficiently different from observations, even allowing for uncertainty. Regions of parameter space where FAMOUS best simulates the Amazon forest fraction are incompatible with the regions where FAMOUS best simulates other forests, indicating a structural error in the model. We use the emulator to simulate the forest fraction at the best set of parameters implied by matching the model to the Amazon, Central African, South East Asian, and North American forests in turn. We can find parameters that lead to a realistic forest fraction in the Amazon, but that using the Amazon alone to tune the simulator would result in a significant overestimate of forest fraction in the other forests. Conversely, using the other forests to tune the simulator leads to a larger underestimate of the Amazon forest fraction. We use sensitivity analysis to find the parameters which have the most impact on simulator output and perform a history-matching exercise using credible estimates for simulator discrepancy and observational uncertainty terms. We are unable to constrain the parameters individually, but we rule out just under half of joint parameter space as being incompatible with forest observations. We discuss the possible sources of the discrepancy in the simulated Amazon, including missing processes in the land surface component and a bias in the climatology of the Amazon.


Sign in / Sign up

Export Citation Format

Share Document