Analyzing the paleoseismic history of the La Rouvière fault, unexpected source of the 11-11-2019, Mw4.9 Le Teil surface rupturing earthquake (Cévennes fault system, France) 

Author(s):  
Jean-François Ritz ◽  
Stéphane Baize ◽  
Matthieu Ferry ◽  
Estelle Hannouz ◽  
Magali Riesner ◽  
...  

<p>The 11-11-2019 Le Teil earthquake (Mw4.9), located in the Rhône river valley occurred along the La Rouvière fault (LRF) within the NE termination of the Cévennes faults system (CFS). This very shallow moderate magnitude and reverse-faulting event inverted an Oligocene normal fault which was not assessed to be potentially active, causing surface rupture and strong ground shaking. Its morphology shows no evidence of cumulative reverse faulting during the Quaternary. <span><span data-language-to-translate-into="fr" data-phrase-index="0">All of this information raises the question of whether the fault was reactivated for the first time since the Oligocene during the Teil earthquake, </span></span>or if it had broken the surface before, during the Quaternary period, but could not be detected. In addition, it poses the question of the potential reactivation of other faults of the CFS and other faults in metropolitan France as well.</p><p>To tackle those issues, we launched paleoseismic investigations along the LRF to analyze and characterize evidences of paleo-ruptures in Quaternary deposits. Twelve trenches were dug along the section that broke in 2019. The trenches were dug in aeolian deposits and slope colluvium lying against the ancient LRF normal fault mirror carved in the Barremian limestones. Five trenches yielded favorable Quaternary deposits to document deformation suggesting that one paleo-event, maybe more, occurred with kinematic characteristics (sense of movement, amount of displacement) similar to the 2019 event. The radiocarbon dating of the deformed units (“bulks” collected from the colluvium clayey-silty matrix) suggests, in particular, that at least one event occurred in the past 13 Ka (i.e. penultimate event prior to the Teil earthquake) . The fact that these events are not preserved in the morphology is explained by the small amount of displacement and a long return period, consistent with the low strain rate measured by GPS in this region (~10<sup>-9</sup> yrs<sup>-1</sup>). Our study shows that it is therefore fundamental to carry out more detailed paleoseismological investigations in metropolitan France, especially along ancient faults favorably oriented with respect to the present stress field. Those are already planned in the next coming months along other segments of the CFS.</p>

2021 ◽  
Vol 58 ◽  
pp. 200
Author(s):  
Dimitrios Galanakis ◽  
Sotiris Sboras ◽  
Garyfalia Konstantopoulou ◽  
Markos Xenakis

On March 3, 2021, a strong (Mw6.3) earthquake occurred near the towns of Tyrnavos and Elassona. One day later (March 4), a second strong (Mw6.0) earthquake occurred just a few kilometres toward the WNW. The aftershock spatial distribution and the focal mechanisms revealed NW-SE-striking normal faulting. The focal mechanisms also revealed a NE-SW oriented extensional stress field, different from the orientation we knew so far (ca. N-S). The magnitude and location of the two strongest shocks, and the spatiotemporal evolution of the sequence, strongly suggest that two adjacent fault segments were ruptured respectively. The sequence was followed by several coseismic ground deformational phenomena, such as landslides/rockfalls, liquefaction and ruptures. The landslides and rockfalls were mostly associated with the ground shaking. The ruptures were observed west of the Titarissios River, near to the Quaternary faults found by bore-hole lignite investigation. In the same direction, a fault scarp separating the alpidic basement from the alluvial deposits of the Titarissios valley implies the occurrence of a well-developed fault system. Some of the ground ruptures were accompanied by extensive liquefaction phenomena. Others cross-cut reinforced concrete irrigation channels without changing their direction. We suggest that this fault system was partially reactivated, as a secondary surface rupture, during the sequence as a steeper splay of a deeper low-to-moderate angle normal fault.


Author(s):  
Lee M. Liberty ◽  
Zachery M. Lifton ◽  
T. Dylan Mikesell

Abstract We report on the tectonic framework, seismicity, and aftershock monitoring efforts related to the 31 March 2020 Mw 6.5 Stanley, Idaho, earthquake. The earthquake sequence has produced both strike-slip and dip-slip motion, with minimal surface displacement or damage. The earthquake occurred at the northern limits of the Sawtooth normal fault. This fault separates the Centennial tectonic belt, a zone of active seismicity within the Basin and Range Province, from the Idaho batholith to the west and Challis volcanic belt to the north and east. We show evidence for a potential kinematic link between the northeast-dipping Sawtooth fault and the southwest-dipping Lost River fault. These opposing faults have recorded four of the five M≥6 Idaho earthquakes from the past 76 yr, including 1983 Mw 6.9 Borah Peak and the 1944 M 6.1 and 1945 M 6.0 Seafoam earthquakes. Geological and geophysical data point to possible fault boundary segments driven by pre-existing geologic structures. We suggest that the limits of both the Sawtooth and Lost River faults extend north beyond their mapped extent, are influenced by the relic trans-Challis fault system, and that seismicity within this region will likely continue for the coming years. Ongoing seismic monitoring efforts will lead to an improved understanding of ground shaking potential and active fault characteristics.


2016 ◽  
Author(s):  
Sean F. Gallen ◽  
Karl W. Wegmann

Abstract. Topography is a reflection of the tectonic and geodynamic processes that act to uplift the Earth's surface and the erosional processes that work to return it to base level. Numerous studies have shown that topography is a sensitive recorder or tectonic signals. A quasi-physical understanding of the relationship between river incision and rock uplift has made the analysis of fluvial topography a popular technique for deciphering relative, and some argue absolute, histories of rock uplift. Here we present results from a study of the fluvial topography from south-central Crete demonstrating that river longitudinal profiles indeed record the relative history of uplift, but several other processes make it difficult to recover quantitative uplift histories. Prior research demonstrates that the south-central coastline of Crete is bound by a large (~100 km long) E-W striking composite normal fault system. Marine terraces reveal that it is uplifting between 0.1–1.0 mm yr−1. These studies suggest that two normal fault systems, the offshore Ptolemy and onshore South-Central Crete faults linked together in the recent geologic past (Ca. 0.4–1 Myrs bp). Fault mechanics predicts that when adjacent faults link into a single fault the uplift rate in the linkage zone will increase rapidly. Using river profile analysis we show that rivers in south-central Crete record the relative uplift history of fault growth and linkage, as theory predicts that they should. Calibration of the commonly used stream power incision model shows that the slope exponent, n, is ~ 0.5, contrary to most studies that find n ≥ 1. Analysis of fluvial knickpoints shows that migration distances are not proportional to upstream contributing drainage area, as predicted by the stream power incision model. Maps of the transformed stream distance variable, χ, indicate that drainage basin instability, drainage divide migration and river capture events complicate river profile analysis in south-central Crete. Waterfalls are observed in southern Crete and appear to operate under less efficient and different incision mechanics than assumed by the stream power incision model. Drainage area exchange and waterfall formation are argued to obscure linkages between empirically derived metrics and quasi-physical descriptions of river incision, making is difficult to quantitatively interpret rock uplift histories from river profiles in this setting. Karst hydrology, break down of assumed drainage area-discharge scaling and chemical weathering might also contribute to the failure of the stream power incision model to adequately predict the behavior of the fluvial system in south-central Crete.


1999 ◽  
Vol 136 (2) ◽  
pp. 133-152 ◽  
Author(s):  
MARCO BONINI

The Chianti Mountains is an important sector of an E-verging regional thrust-related fold (the so-called Tuscan Nappe) extending along the whole length of the Northern Apennines. This thrust system involves the Tuscan Sequence superposing the Macigno sandstones onto Cervarola-Falterona sandstones, both of which are sedimented in adjacent foredeep basins. Detailed field mapping and analysis of superposition relations among tectonic structures, as well as correlation between structures and syntectonic deposition, has allowed Chianti Mountain evolution to be interpreted in terms of three main stages of deformation.The D1 stage resulted in the NE-directed synsedimentary thrusting of the Macigno onto the Cervarola-Falterona sandstones, while large NE to ENE-vergent thrust-related folds developed during the two successive deformation stages (D2 and D3). Fault-propagation folds developed during the D2 stage, and were affected by the Main Chianti Mountains Thrust (MCMT) during the successive D3 stage. In particular, the D3 stage has been correlated to the development, during the Pliocene period, of the hinterland Upper Valdarno Basin, which was previously considered to be an extensional basin. In fact, this continental basin formed along the eastern margin of the Chianti Mountains, ahead of the MCMT that also produced a shortening of the basin fill. With the beginning of the Quaternary period, the tectonic regime switched to extensional, as manifested by the development of a normal fault system on the opposite basin margin.The data presented here allow us to infer that the Chianti Mountains thrust system (D2 and D3) developed during a time interval spanning from the Late Miocene (∼12 Ma) until the Late Pliocene (∼2 Ma) periods. In the Northern Apennines, polyphase thrusting recorded by cover rocks has been related to the activity of basement thrusts, which have been recently evidenced by geophysical data. In this context, the two latest stages of deformation recognised in the Chianti Mountains have been attributed to the activity of the Abetone–Cetona crustal thrust, the deformational effects of which propagated forward in the sedimentary cover.


2020 ◽  
Author(s):  
Amaury Vallage ◽  
Laurent Bollinger ◽  
Yoann Cano ◽  
Johann Champenois ◽  
Clara Duverger ◽  
...  

<p>Metropolitan France is a region of slow tectonic deformation rates with sparse historical and instrumental seismicity, and where geodesy is not able to reach the required resolution in order to resolve the tectonic loadings. The few faults recognized as potential active rely on rare neotectonic slip rates, often integrated over geological scales.</p><p>In this context, the M<sub>L</sub> 5.4 Le Teil 2019 earthquake is of particular interest because it is the largest seismic event recorded in metropolitan France in the last 16 years. The last regional earthquake with a larger magnitude was the Lambesc event that occurred in 1909 about 110 km away from Le Teil epicenter. This recent earthquake offers a noteworthy opportunity to combine different technologies: seismological observations (RESIF and CEA) with satellite InSAR data and infrasound measurements, to help characterizing this stable continental region.</p><p>The analysis shows that the focal mechanism determined from the full waveform inversion of long-period seismological data is consistent with the activation of a reverse fault with a strike around 45°N and is associated with a moment magnitude of 4.8. Moreover, this event produced infrasound signals recorded by the OHP Alpine array located 110 km away. The analysis of these signals provides evidence of ground-to-air coupling in the epicentral region as well as ground shaking information.</p><p>Despite the moderate magnitude of the event, the ground deformation is resolved by InSAR with Sentinel-1 data. The interferogram is consistent with the shallow depth inverted from seismology and confirmed by the presence of surface ruptures. The inversion of multiple InSAR tracks allows characterizing the displacement at depth and along strike on the fault plane. The results are consistent with the focal mechanism derived from seismology. The earthquake has ruptured a 5-km long by ~1.5-km deep fault. The displacement reaches a maximum at a shallow 1 km-depth. The source inverted from InSAR coincides with the Rouvière fault, a branch of the Cévennes fault system formerly known as a normal fault. This reverse earthquake might be an example of an inherited structure re-activation as it is often the case in intraplate regions with polyphased history.</p>


2013 ◽  
Vol 40 (2) ◽  
pp. 244-256 ◽  
Author(s):  
Holger Funk

In the history of botany, Adam Zalužanský (d. 1613), a Bohemian physician, apothecary, botanist and professor at the University of Prague, is a little-known personality. Linnaeus's first biographers, for example, only knew Zalužanský from hearsay and suspected he was a native of Poland. This ignorance still pervades botanical history. Zalužanský is mentioned only peripherally or not at all. As late as the nineteenth century, a researcher would be unaware that Zalužanský’s main work Methodi herbariae libri tres actually existed in two editions from two different publishers (1592, Prague; 1604, Frankfurt). This paper introduces the life and work of Zalužanský. Special attention is paid to the chapter “De sexu plantarum” of Zalužanský’s Methodus, in which, more than one hundred years before the well-known De sexu plantarum epistola of R. J. Camerarius, the sexuality of plants is suggested. Additionally, for the first time, an English translation of Zalužanský’s chapter on plant sexuality is provided.


2008 ◽  
Vol 1 (2) ◽  
pp. 139-155 ◽  
Author(s):  
YAEL DARR

This article describes a crucial and fundamental stage in the transformation of Hebrew children's literature, during the late 1930s and 1940s, from a single channel of expression to a multi-layered polyphony of models and voices. It claims that for the first time in the history of Hebrew children's literature there took place a doctrinal confrontation between two groups of taste-makers. The article outlines the pedagogical and ideological designs of traditionalist Zionist educators, and suggests how these were challenged by a group of prominent writers of adult poetry, members of the Modernist movement. These writers, it is argued, advocated autonomous literary creation, and insisted on a high level of literary quality. Their intervention not only dramatically changed the repertoire of Hebrew children's literature, but also the rules of literary discourse. The article suggests that, through the Modernists’ polemical efforts, Hebrew children's literature was able to free itself from its position as an apparatus controlled by the political-educational system and to become a dynamic and multi-layered field.


2020 ◽  
Vol 72 (2) ◽  
Author(s):  
Tomasz Dzieńkowski ◽  
Marcin Wołoszyn ◽  
Iwona Florkiewicz ◽  
Radosław Dobrowolski ◽  
Jan Rodzik ◽  
...  

The article discusses the results of the latest interdisciplinary research of Czermno stronghold and its immediate surroundings. The site is mentioned in chroniclers’ entries referring to the stronghold Cherven’ (Tale of Bygone Years, first mention under the year 981) and the so-called Cherven’ Towns. Given the scarcity of written records regarding the history of today’s Eastern Poland, Ukraine, and Belarus in the 10th and 11th centuries, recent archaeological research, supported by geoenvironmental analyses and absolute dating, brought a significant qualitative change. In 2014 and 2015, the remains of the oldest rampart of the stronghold were uncovered for the first time. A series of radiocarbon datings allows us to refer the erection of the stronghold to the second half/late 10th century. The results of several years’ interdisciplinary research (2012-2020) introduce qualitatively new data to the issue of the Cherven’ Towns, which both change current considerations and confirm the extraordinary research potential in the archeology of the discussed region.


Author(s):  
Michael D. Gordin

Dmitrii Mendeleev (1834–1907) is a name we recognize, but perhaps only as the creator of the periodic table of elements. Generally, little else has been known about him. This book is an authoritative biography of Mendeleev that draws a multifaceted portrait of his life for the first time. As the book reveals, Mendeleev was not only a luminary in the history of science, he was also an astonishingly wide-ranging political and cultural figure. From his attack on Spiritualism to his failed voyage to the Arctic and his near-mythical hot-air balloon trip, this is the story of an extraordinary maverick. The ideals that shaped his work outside science also led Mendeleev to order the elements and, eventually, to engineer one of the most fascinating scientific developments of the nineteenth century. This book is a classic work that tells the story of one of the world's most important minds.


Author(s):  
Rachel Ablow

The nineteenth century introduced developments in science and medicine that made the eradication of pain conceivable for the first time. This new understanding of pain brought with it a complex set of moral and philosophical dilemmas. If pain serves no obvious purpose, how do we reconcile its existence with a well-ordered universe? Examining how writers of the day engaged with such questions, this book offers a compelling new literary and philosophical history of modern pain. The book provides close readings of novelists Charlotte Brontë and Thomas Hardy and political and natural philosophers John Stuart Mill, Harriet Martineau, and Charles Darwin, as well as a variety of medical, scientific, and popular writers of the Victorian age. The book explores how discussions of pain served as investigations into the status of persons and the nature and parameters of social life. No longer conceivable as divine trial or punishment, pain in the nineteenth century came to seem instead like a historical accident suggesting little or nothing about the individual who suffers. A landmark study of Victorian literature and the history of pain, the book shows how these writers came to see pain as a social as well as a personal problem. Rather than simply self-evident to the sufferer and unknowable to anyone else, pain was also understood to be produced between persons—and even, perhaps, by the fictions they read.


Sign in / Sign up

Export Citation Format

Share Document