Tillage-induced management impact on soil properties and initial soil erosion in degraded calcareous soils in Mediterranean fig orchard

Author(s):  
Igor Bogunovic ◽  
Leon Josip Telak ◽  
Ivan Dugan ◽  
Carla S. S. Ferreira ◽  
Paulo Pereira

<p>High majority of soil erosion studies focus on cereal croplands, vineyards, olive, avocado, citrus, almond, persimmon, apple, and apricot orchards. To date, there is a lack of information about the possible impacts of tillage management on soil properties and hydrological response in fig orchards. Understanding this will be crucial to design efficient soil conservation practices and degradation control. Therefore, the aim of this research was to study the initial soil erosion in fig plantations and temporal evolution of initial soil erosion after the tillage intervention on undeveloped, Calcic Fluvisol in Dalmatia, Croatia. The study was conducted by collecting undisturbed soil samples, followed by rainfall simulations (58 mm h<sup>-1</sup>, during 30 min, over 0.785 m<sup>2</sup> plots) in eight repetitions per measurement 2 days, 1 month, and 3 months after the intensive tillage. The results showed a clear difference among soil properties trough time. Seasonal effect significantly modifies soil properties and hydrological response. Soil bulk density and mean weight diameter increase (p < 0.05), while water holding capacity, water stable aggregates, soil organic content, and available phosphorus decrease (p < 0.05) by time after tillage<sub>. </sub>The highest runoff was measured 1 month (100.5 m<sup>3</sup> ha<sup>-1</sup>), followed by 3 months (82 m<sup>3</sup> ha<sup>-1</sup>), and 0 months (48.3 m<sup>3</sup> ha<sup>-1</sup>) after tillage. Sediment losses were highest at 3 months (3488.9 kg ha<sup>-1</sup>), followed by 3.5 times lesser losses at 1 month (990.6 kg ha<sup>-1</sup>), and 8.2 times lower right after the tillage (426.1 kg ha<sup>-1</sup>). Temporal variations of soil erodibility in this study were under the influence of soil natural consolidation and precipitation. Fig orchards on young, undeveloped soils are highly erodible forms of land use and conservation practices need to be deploy in order to mitigate land degradation.</p><p><strong>Keywords:</strong> soil physical properties, runoff, permanent plantation, short-term changes, undeveloped soil</p><p><strong>Acknowledgments</strong></p><p>This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).</p>

2020 ◽  
Vol 13 ◽  
pp. 117862212092832 ◽  
Author(s):  
Igor Bogunovic ◽  
Leon Josip Telak ◽  
Paulo Pereira

Soil and water loss in agricultural fields is a global problem. Although studies about soil erosion in croplands and vineyards exist, the direct comparison between these land uses is missing, especially under continental climates in Europe. Therefore, it is needed to find control measures to the impacts of these land-use management strategies on soil properties and hydrological response. The objective of this work is to estimate and compare the impacts of croplands and vineyards under conventional management croplands and vineyards on soil properties (water holding capacity—WHC; bulk density—BD; soil water content—SWC; water stable aggregates—WSA; mean weight diameter—MWD; soil organic matter—SOM; available phosphorus—AP; total nitrogen—TN) and hydrological response (runoff—Run; sediment content—SC; sediment loss—SL; carbon loss—C loss; phosphorus loss—P loss; nitrogen loss—N loss) in Eastern Croatia. To achieve these goals, a study was set up using rainfall simulation tests at 58 mm h−1 over 30 minutes on 2 locations (Zmajevac: 45°48′N; 18°46′E; Erdut: 45°30′N; 19°01′E). In total, 32 rainfall simulations were carried out, 8 repetitions in vineyards and 8 in cropland plots of 0.876 m2, per location. Bulk density was significantly higher in cropland plots compared with the vineyard. Soil water content was significantly higher in Zmajevac cropland compared with Erdut plots. Also, SWC was significantly lower in Zmajevac vineyard than in the cropland located in the same area. Water stable aggregates and MWD were significantly higher in vineyard plots than in the cropland. Also, SOM and TN were significantly lower in Zmajevac cropland compared with the vineyard located in the same area. Available phosphorus was significantly high in Zmajevac plots than in Erdut. The rainfall simulations showed that Run was significantly higher in Erdut vineyard (8.2 L m−2) compared with Zmajevac (3.8 L m−2). Also, the Run in Erdut Cropland was significantly lower than in the vineyard. Sediment content did not show significant differences among locations. In Erdut, vineyard plots had a significantly lower SL (28.0 g m−2) than the cropland ones (39.1 g m−2). C loss was significantly higher in Zmajevac cropland than in Erdut. Also, C loss was significantly lower in Zmajevac vineyard compared with the cropland. We did not observe significant differences in P loss, and N loss also did not show significant differences. The principal component analysis showed that SOM was associated with WSA, AP, and TN. These variables were negatively related to slope, SWC, and C loss (factor 1). Also, MWD was inversely related to SL, P, and N loss (factor 2). Bulk density and SC were negatively related to Run. Overall, we conclude that noninvertive tillage practices in vineyards preserve soil structure, enhance soil quality, and reduce the extent of soil degradation.


Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


2016 ◽  
Vol 6 (2) ◽  
pp. 16 ◽  
Author(s):  
C. Gyamfi ◽  
J. M. Ndambuki ◽  
R.W. Salim

<p class="1Body">Soil erosion is a major land degradation issue affecting various facets of human lives. To curtail soil erosion occurrence requires understanding of soil properties and how they influence soil erosion. To this end, the soil erodibility index which gives an indication of the susceptibility of soils to erosion was examined. In particular, we aimed to determine soil erodibility index at field scale and establish relationships that exist between selected soil properties and soil erodibility index. It was hypothesized that for soil erodibility index to vary spatially, then the existing soil properties should have varying spatial structure. Hundred disturbed and 100 undisturbed soil samples were collected from a 7.3 ha gridded area. The samples were analyzed for particle size distribution, bulk density, particle density, organic matter content and porosity. All soil analyses were conducted following standard procedures. Data were analyzed statistically and geostatistically on the basis of semivariograms. Sandy clay loam was the dominant soil texture in the studied field. Results indicate significant negative relationship between<strong> </strong>sand content, bulk density, particle density and organic matter with soil erodibility index. Silt correlated significantly with a positive relation with soil erodibility. Estimated erodibility for the sampled field ranged from 0.019 t.ha.hr/ha.MJ.mmto 0.055 t.ha.hr/ha.MJ.mm. The order of dominance of erodibility ranges were 0.038-0.042 t.ha.hr/ha.MJ.mm&gt; 0. 036-0.08 t.ha.hr/ha.MJ.mm&gt; 0.032-0.036 t.ha.hr/ha.MJ.mm&gt; 0.019-0.032 t.ha.hr/ha.MJ.mm&gt; 0.042-0.055 t.ha.hr/ha.MJ.mm. Regression analysis revealed silt to be the most significant variable that influences soil erodibility. The best regression of soil properties on soil erodibility index gave an R<sup>2 </sup>of 0.90. A comparison of the regression equation with other studies indicated good performance of the equation developed.</p>


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 171
Author(s):  
Gaurav Mishra ◽  
Rosa Francaviglia

Northeast (NE) India is a typical tropical ecosystem with a luxuriant forest vegetation cover, but nowadays forests are under stress due to exploitation and land use changes, which are known to affect soil health and productivity. However, due to a scarcity of data, the influence of land uses and altitude on soil properties of this peculiar ecosystem is poorly quantified. This study presents the changes in soil properties in two districts of Nagaland (Mon and Zunheboto) in relation to land uses (forest, plantation, jhum and fallow jhum), altitude (<500 m, 500–1000 m, >1000 m) and soil texture (coarse, medium, fine). For this, a random soil sampling was performed in both the districts. Results indicated that soil organic carbon (SOC) stocks and available potassium (K) were significantly influenced by land uses in the Mon district, while in Zunheboto a significant difference was observed in available phosphorus (P) content. SOC stocks showed an increasing trend with elevation in both districts. The influence of altitude on P was significant and the maximum concentration was at lower elevations (<500 m). In Mon, soil texture significantly affected SOC stocks and the available N and P content. The variability in soil properties due to land uses, altitudinal gradients and textural classes can be better managed with the help of management options, which are still needed for this ecosystem.


2020 ◽  
Vol 12 (1) ◽  
pp. 11-24
Author(s):  
Kristina S. Kalkan ◽  
Sofija Forkapić ◽  
Slobodan B. Marković ◽  
Kristina Bikit ◽  
Milivoj B. Gavrilov ◽  
...  

AbstractSoil erosion is one of the largest global problems of environmental protection and sustainable development, causing serious land degradation and environmental deterioration. The need for fast and accurate soil rate assessment of erosion and deposition favors the application of alternative methods based on the radionuclide measurement technique contrary to long-term conventional methods. In this paper, we used gamma spectrometry measurements of 137Cs and unsupported 210Pbex in order to quantify the erosion on the Titel Loess Plateau near the Tisa (Tisza) River in the Vojvodina province of Serbia. Along the slope of the study area and in the immediate vicinity eight representative soil depth profiles were taken and the radioactivity content in 1 cm thick soil layers was analyzed. Soil erosion rates were estimated according to the profile distribution model and the diffusion and migration model for undisturbed soil. The net soil erosion rates, estimated by 137Cs method range from −2.3 t ha−1 yr−1 to −2.7 t ha−1 yr−1, related to the used conversion model which is comparable to published results of similar studies of soil erosion in the region. Vertical distribution of natural radionuclides in soil profiles was also discussed and compared with the profile distribution of unsupported 210Pbex measurements. The use of diffusion and migration model to convert the results of 210Pbex activities to soil redistribution rates indicates a slightly higher net erosion of −3.7 t ha−1 yr−1 with 98% of the sediment delivery ratio.


2021 ◽  
Author(s):  
Gerald Duma

&lt;p&gt;Based on the comprehensive earthquake catalogue USGS ( HYPERLINK&lt;span&gt;&amp;#160; &lt;/span&gt;https://earthquake.usgs.gov) the paper demonstrates that strong earthquake activity, seismic events with M&amp;#8805;6, exhibits a seasonal trend. This feature is the result of&lt;span&gt;&amp;#160; &lt;/span&gt;analyses of earthquake data for the N- and S- Earth Hemisphere in period 2010-2019. It can be shown also for single earthquake prone regions as well, like Japan, Eurasia, S-America.&lt;/p&gt;&lt;p&gt;Any seasonal effect suggests an external influence. In that regard, one can think also of a solar-terrestrial effect, that is suggested already in several studies (e.g&lt;span&gt;&amp;#160; &lt;/span&gt;M.Tavares, A.Azevedo, 2011; D.A.E. Vares, M.A.Persinger,2014; G.Duma, 2019). This assumption leads to the question: Which dynamic process can cause a trigger effect for strong earthquakes in the Earth's lithosphere.&lt;/p&gt;&lt;p&gt;In this study the intensity of solar flares and the resulting radiation, the solar wind, towards the Earth was taken into account. An appropriate parameter which has been regularity measured and reported for many decades and which reflects the intensity of solar radiation is the magnetic index Kp. It is measured at numerous geomagnetic observatories and describes the magnetic disturbances in nT within 3 hour intervals, respectively. Averages of all the measured 3-hour values are then published as Kp, therefore considered a planetary parameter (International Service of Geomagnetic Indices ISGI,France).&lt;/p&gt;&lt;p&gt;The temporal variations of strong earthquake activity over 10 years and their energy release was compared with the above mentioned index Kp. Actually, a distinct correlation between the two quantities, Kp and earthquake frequency, resulted in cases of different regions as well as globally.&amp;#160;Another essential result of the study is that maxima of Kp preceed those of earthquake activity by about 60 to 80 days in most cases. The mechanism has not yet been modeled satisfactorily.&lt;/p&gt;


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

&lt;p&gt;&lt;strong&gt;Straw mulch impact on soil properties and initial soil erosion processes in the maize field&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic&lt;/p&gt;&lt;p&gt;University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia&lt;/p&gt;&lt;p&gt;(*correspondence to Ivan Dugan: [email protected])&lt;/p&gt;&lt;p&gt;Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha&lt;sup&gt;-1&lt;/sup&gt; under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays&amp;#160;L.) field in Blagorodovac, Croatia (45&amp;#176;33&amp;#8217;N; 17&amp;#176;01&amp;#8217;E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha&lt;sup&gt;-1&lt;/sup&gt;), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h&lt;sup&gt;-1&lt;/sup&gt;, for 30 min, over 0.785 m&lt;sup&gt;2&lt;/sup&gt; plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p &lt; 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p &gt; 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha&lt;sup&gt;-1&lt;/sup&gt;, when extrapolated, reached as high as 5.07 t ha&lt;sup&gt;-1 &lt;/sup&gt;in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key words: straw mulch, &lt;/strong&gt;rainfall simulation, soil water erosion&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;This work was supported by Croatian Science Foundation through the project &quot;Soil erosion and degradation in Croatia&quot; (UIP-2017-05-7834) (SEDCRO).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Literature&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.&lt;/p&gt;&lt;p&gt;Kisic, I., Bogunovic, I., Birk&amp;#225;s, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.&lt;/p&gt;


2018 ◽  
Vol 50 (1) ◽  
pp. 77-92 ◽  
Author(s):  
Kenneth Miller ◽  
Brenna J. Aegerter ◽  
Nicholas E. Clark ◽  
Michelle Leinfelder-Miles ◽  
Eugene M. Miyao ◽  
...  

2015 ◽  
Vol 12 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Ashim Kumar Saha ◽  
Apu Biswas ◽  
Abdul Qayyum Khan ◽  
Md. Mohashin Farazi ◽  
Md. Habibur Rahman

Long-term tea cultivation has led to degradation of the soil. Old tea soils require rehabilitation for restoring soil health. Soil rehabilitation by growing different green crops can break the chain of monoculture of tea. An experiment was conducted at The Bangladesh Tea Research Institute (BTRI) Farm during 2008-2011 to find out the efficiency of different green crops on the improvement of soil properties. Four green crops such as Guatemala, Citronella, Mimosa and Calopogonium were grown to develop the nutritional value of the degraded tea soil. Soil samples were collected and analyzed before and at the end of experiment. Soil pH was increased in all four green crops treated plots with the highest increase in Citronella treated plots (from 4.1 to 4.5). Highest content of organic carbon (1.19%) and total nitrogen (0.119%) were found in Mimosa and Calopogonium treated plots, respectively. Concentration of available phosphorus, calcium and magnesium in all green crops treated plots were above the critical values, while available potassium content was above the critical value in Guatemala, Citronella and Mimosa treated plots. Changes in soil pH and available potassium were significant, while changes in organic carbon content, total nitrogen and available calcium were insignificant. Changes in available phosphorus and magnesium were significant. The Agriculturists 2014; 12(2) 34-38


Sign in / Sign up

Export Citation Format

Share Document